A PRELIMINARY REPORT ON
A GENERAL THEORY
OF INDUCTIVE INFERENCE

R. J. Solomonoff

Abstract

Some preliminary work is presented on a very general new theory of
inductive inference. The extrapolation of an ordered sequence of sym-
bols is implemented by computing the a priori probabilities of various
sequences of symbols. The a priori probability of a sequence is obtained
by considering a universal Turing machine whose output is the sequence
in question. An approximation to the a priori probability is given by
the shortest input to the machine that will give the desired output. A
more exact formulation is given, and it is made somewhat plausible that
extrapolation probabilities obtained will be largely independent of just
which universal Turing machine was used, providing that the sequence to
be extrapolated has an adequate amount of information in it.

Some examples are worked out to show the application of the method
to specific problems. Applications of the method to curve fitting and
other continuous problems are discussed to some extent. Some alternative
theories of inductive inference are presented whose validities appear to be
corollaries of the validity of the first method described.
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PREFACE TO REVISED VERSION

This paper was prepared as a statement of work in progress prior to my trip
to the conference “Cerebral Systems and Computers” held at the California
Institute of Technology, February 8-11, 1960 and copies were distributed at
the conference. Since then, further development has made several parts of the
paper obsolete, and continuing work makes it impossible at present to prepare
a definitive statement of this line of development. For this reason, and because
of a number of requests for the paper, it appears useful to present the original
paper together with some of the more important revisions which will be pointed
out in this preface.

A. The main point of the report is Equation (5), Section 11. Tt is clear that
this equation, if taken literally, causes difficulties, since, as was shown by Turing,
it is not always possible to tell whether a given input to a Turing machine will
ever allow the machine to stop, and thereby produce a meaningful output. To
overcome this objection, we can limit our discussion to machines that are not
“universal machines” in the most general sense, but machines with limited, but
large, memory capacities. These correspond to limiting a Turing machine to a
tape of finite length. We could then perhaps approach Equation (5) of Section
11, by allowing the total memory capacity (or tape length) to approach infinity.

B. In Section 7, an expression is given for the a priori probability of a
Bernoulli sequence of two symbol types. A somewhat better expression can be
obtained using more rigorous arguments. The expression obtained corresponds
to some extent to one obtained by Carnap and gives probability ratios that are
the same as those given by Laplace’s rule of succession. For d different symbol
types the a priori probability is

d
(d—1)! ] n!
i=1

(d_léni)!

n; is the number of times that the ith symbol type appears in the sequence.
The probability ratio of the next symbol being the kth symbol type rather than
the jth type is

ng +1
TLJ+1

C. Equation (6), Section 15 is incorrect. A more satisfactory solution to the
problem is to calculate
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) In(1—p1))
+(1=s1)(r1 - Inry + (1 —r1) - In(1l — p2))

B = s3(p2-inps + (1 —p2) - In(1 —p2))
+(1 = s2)(r2 - Inrg + (I —72) - In(1 — 12))

A = sipp-lnpr+(1—p1

s1 is the probability that a randomly chosen 50-year-old man will have had
pneumonia.

r1 is the probability that if a 50-year-old man has not had pneumonia, he
will live to 60.

sg is the probability that both parents of a randomly chosen 50-year-old man
will have lived more than 90 years.

ro is the probability that if one or both parents of a 50-year-old man died
before they were 90, then the 50-year-old man will live to 60. If A > B then
the probability that the man in question will live to 60 is p;. If B > A the
probability is ps.

This discussion is for cases in which the probability values used have been
obtained from large samples. If the samples are small, and/or A is very close to
B, then the final probability obtained involves the sample sizes of the various
kinds of data used, as well as the costs of describing the various statistical
categories involved.

It will be noted that we required ry, ro, s, and sy - four pieces of data -
rather than the single probability that a 50-year-old man, both of whose parents
lived to over 90, will live to 60. However, these four pieces of data are usually
more readily obtained, or approximated, than the one, otherwise critical, piece
of data.

D. An informal proof has been obtained, that for any finite state Markov
process, Equation (5) of Section 11 approaches the correct probability values,
arbitrarily closely, if a long sample sequence is used.

R.J.Solomonoff

November 30, 1960
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PREFACE TO ORIGINAL VERSION
(Report V-131, February 1960)

This memo is an outline of some preliminary work on a completely general
theory of inductive inference, for universes containing continuous, discontinuous,
numerical and non-numerical objects.

The most important previous attempts to obtain a unified theory have been
those of R. A. Fisher and of R. Carnap. It is felt that there is a good possibility
that the method outlined here overcomes some of the serious shortcomings of
the methods of Fisher and of Carnap.

The final statement of the present method is Equation (5) of Section 11.
The rest of the memo deals with successive approximations leading to Equation
(5), and some outlines of applications of Equation (5) to specific problems.

Although the gross approximations used to obtain some of the results of the
application of Equation (5) lead the author to have incomplete confidence in
them, it is felt that Equation (5) itself is fairly likely to be correct.

The specific inductive inference problem dealt with is the extrapolation of
an ordered sequence of discrete symbols. The methods may, however, be used
to extrapolate unordered sets of objects. In order to deal with continuous data,
any consistent method of converting from continuous to digital symbolism may
be used, and then the regular method can be used with the digital symbols.

The method described is used only for the extrapolation of sequences of
symbols. If predictions about objects in the real world are desired, one must
devise some method of making a correspondence between the symbol sequences
and events in the world. It is believed that using the present extrapolation
method on the symbol sequences will result in probability values that correspond
to those in the real world, and that the probability values obtained for real-world
events in this way will be largely independent of the nature of the correspondence
that is devised between the symbols and the events they represent - just as long
as the correspondence is not “unreasonably complicated,” is used consistently,
and does not lose too much information.

February 4, 1960



A PRELIMINARY REPORT ON
A GENERAL THEORY
OF INDUCTIVE INFERENCE
R. J. Solomonoff

1 INTRODUCTION

We shall be concerned primarily with the problem of extrapolation of a very
general time series, whose members may be numbers or non- numerical objects,
or mixtures of these. At first, a fairly simple extrapolation formula will be
given. Its shortcomings will be discussed, and it will be progressively improved
upon, until a final formula that seems to overcome all of these difficulties will
be presented.

Consider a very long sequence of symbols — e.g,, a passage of English text,
or a long mathematical derivation. We shall consider such a sequence of sym-
bols to be “simple” and have high a priori probability, if there exists a very
brief description of this sequence — using, of course, some sort of stipulated
description method. More exactly, if we use only the symbols 0 and 1 to express
our description, we will assign the probability 27V to a sequence of symbols, if
its shortest possible binary description contains N digits.

2 THE CONCEPT OF “BINARY DESCRIP-
TION”

Suppose that we have a general purpose digital computer M; with a very large
memory. (Later we shall consider Turing machines — essentially computers
having infinitely large memories.)

Any finite string of 0’s and 1’s is an acceptable input to M;. The output
of My (when it has an output) will be a (usually different) string of symbols,
usually in an alphabet other than the binary. If the input string S to machine
M; gives output string T', we shall write

Mi(S)=T

Under these conditions, we will say that “S is a description of T with respect
to machine M;.” If S is the shortest such description of T, and S contains NV
digits, then we will assign to the string, T, the a priori probability, 27V,



3 THE FIRST APPROXIMATE EQUATION

Let us apply this a priori probability to time series extrapolation. Suppose that
T is a string of symbols that constitutes a time series. We want to know the
relative probability that the next symbol in the series will be the symbol “a”
rather than the symbol “b”.

Let T~ a represent the string of symbols that is T concatenated with the
symbol a.

Let T' ~ b be similarly defined.

Let S, be the shortest description of 7' —~ a, with respect to machine Mj.

Let Sp be the correspondingly minimal description for 7" —~ b.

Let NSa be the number of digits in S,.

Let Ng, be the number of digits in Sj.

Then tﬁe relative probability of a, rather than b, as continuation of the
sequence T', will be, with respect to machine M,

9—Ns, + Ng, (1)

which is the ratio of the a priori probabilities of 7"~ a and T —~ b.

4 FIRST OBJECTION: THAT EQUATION (1)
IS MACHINE DEPENDENT

There are several very serious objections that immediately come to mind. First,
it is quite clear that N S, and N S, will depend very much upon just what
machine is selected — in fact, by properly selecting machines, we can give
N S, N S, any value we like.

We will later (in Section 9) try to make it plausible that if T is a very long
sequence of symbols that contains all of the kinds of data that a man is likely
to observe in his lifetime, then N S, N S, will be machine independent over a
rather large, “natural” set of machines.

5 SECOND OBJECTION: THAT THE PROB-
ABILITIES OF EQUATION (1) DO NOT CON-
VERGE

Another objection is that if we assign a priori probability 2~ to a binary string
of length IV, then the total a priori probability of all binary strings does not
converge — i.e., there are 2 strings for N = 1; their individual probabilities are
1/2 each, their total probability is 1. There are 4 strings for N = 2, their total
probability is 1 also. Similarly, the total probability of all strings of length N



will be 1, for any value of N. Clearly the sum of all these probabilities does not
converge.

We can, however, think of the binary descriptions as being formed by a
simple Markov process. The digit 0 is produced with probability 1/2. The digit
1 is also produced with probability 1/2. Clearly such a Markov chain has no
means to terminate. It must be of infinite length.

We can remedy this difficulty in a very natural way by giving the digits
0 and 1, each probability 1/2 — 1/2¢ and have the probability of termination
of the string be e. Since we will deal only with very long descriptions, e will
be very small. Using the e formalism, we find that though the total a priori
probability of all sequences, does indeed converge, our prediction probabilities
have not changed much. Instead of

9—Ns, + Ng,

we now write

[1/2(1 = e)Vse ~ N
Since € is much less than 1,

(1—e)Vse = Nsy, nq
and

[1/21 = N5 ~ N5,
is very close to

oNs, + Ns,

It is clear that the expected length of a description is about 1/

6 THIRD OBJECTION: THAT ALL THE PROB-
ABILITY RATIOS OF EQUATION (1) ARE
INTEGRAL POWERS OF TWO

Another objection that comes immediately to mind is that N S, Ng  must
always be an integer, and so the relative probabilities of the two possibcie con-
tinuations of the sequence would have to be integral powers of 2 — certainly
this is not a realistic restriction, since, in general, probabilities may have any
values between zero and one.

We will overcome this difficulty by three different devices. The first is some-
what ad hoc, and will be discussed immediately. The second will overcome



another difficulty in addition to the present one, and will be discussed in Sec-
tion 11. These two methods do not interfere with one another. A third method
is discussed in Section 13.

It will be noted that the present difficulty seems associated with the use
of just two symbol types in our description strings. If we used more than two
types of symbols (i.e., N types) there would be even more trouble, since the
probability ratios would then be restricted to integral powers of N — an even
coarser gradation than integral powers of 2.

An apparently direct source of trouble is that if an integral number of symbol
types is used, there is usually some “wastage of bits” in expressing integers. For
example, to express the integer 7 in binary notation, we use 3 bits in the sequence
111. However, to express the integer 8, 4 digits are needed, i.e., 1000. It seems
unlikely that 8, which is only 14% larger than 7, should require a whole extra
bit. Also the numbers 9 through 15 all require only 4 bits.

Much “bit wastage” can be avoided if we allow a “cost” of just logs bits
for the number n, if n occurs in a context in which the value zero would be
meaningless. If zero is meaningful, a cost of logs(n + 1) should be assigned to
the number n.

In the previous paragraph, and in the following example, it will seem as
though the means used for representing numbers in descriptions are rather ar-
bitrary. It can, however, be made plausible that the probability ratios obtained
using these rather “arbitrary methods” are identical with the ratios obtained
using the more intuitively reasonable Equation (5) of Section 11.

7 A SIMPLE EXAMPLE OF INDUCTION

A very simple example is afforded by a sequence of a A’s and b B’s. The letters
A and B occur in arbitrary order. We are then asked “What is the relative
likelihood of an A rather than a B following this sequence?”

To describe the sequence of a A’s and b B’s, we first note that there are just
(a + b)!/alb! different sequences containing just a A’s and b B’s. A complete
description of the sequence would then be given by the string RABabk. k tells
which of the (a 4 b)!/ald! different orderings of the symbols A and B actually
occurred and

(a+b)!

lsks a! b!

R tells the computer just what sort of notation is being used. In general,
there will be several different symbols of this type.

To compute the bit cost of this description, we would have to know how A,
B and R are to be represented in our system. Suppose A costs C4 bits, and
B costs Cp bits and R costs Cr bits (C4, Cp and Cg are all irrelevant to the
final probability ratio to be computed).



The numbers a and b cost logaa and logsb bits, respectively.

k will cost logz[(a + b)!/alb!] bits.

The cost of k seems a bit arbitrary - should it not be logsk?

First of all, k£ differs from a and b, in that k£ has both upper and lower limits.
k is a choice between (a + b)!/alb! alternatives. On the average, k will have
about logs[(a + b)!/alb!] bits in its binary representation - but this does not
justify using a cost of logs[(a + b)!/a!bl] bits for k, when k does not have that
many digits in its binary representation.

Again the true justification to using this bit cost for k is that it results in
the same probability ratios as the more intuitively reasonable Equation (5) of
Section 10.

The total bit cost obtained for the description RABabk is Cy + Cp + Cr +
logaa + logab + loga[(a + b)!/alb!]. The resultant a priori probability is

o(~Ca—Cr—Cr) (@ = DI~ 1)!
(a+0)!

Let us now consider the same sequence of A’s and B’s, to which an additional
A has been appended. The resultant sequence will have a+1 A’s and b B’s. Its
a priori probability is therefore

2(*CA*CB*CR) (L'(b— 1)' (2)
(a+b+1)!
Appending an A has multiplied the a priori probability of the resultant
sequence by a factor of

a
a+b+1

We may view —loga(a/(a+ b+ 1)) as the bit cost of the symbol A, in that
particular situation, and we shall call (a+b+1)/a the “raw cost” of the symbol
A in that situation.

Similarly, the a priori probability of the sequence after B has been appended
is

o(~Ca—C5—Cr) (a — 1) 3)
(a+b+1)!
The bit cost of the appended B is —loga(b/(a + b+ 1)) and the raw cost of
B was (a+b+1)/b.
The relative probability of A rather than B following the original sequence
of a A’s and b B’s is the ratio of the a priori probabilities in expression (2) and
expression (3) - This is

20=Ca=C5=Cr) gl(b—1)l/(a+b+1)! a

9(~Ca=Ca=Cr) (a — 1)W1 /(a+b i) b




which is approximately what is expected. Note also that

raw cost ofB

a
b raw cost ofA

a relationship which continues to be true when suitably generalized.

This simple result, which gives the frequency ratio of 2 kinds of events as an
estimate of their probability ratio, is called, in inductive inference circles, “The
Straight Rule.” An important objection to it is that if @ = 2 and b = 0, then it
tells us that we have a probability of 1 for the next symbol being A. This seems
intuitively unreasonable, since we would certainly not be absolutely certain of
the next symbol after so short a sequence.

“Laplace’s rule” gives the value (a +1)/(b+1).

Carnap (Ref. 1, page 568) gives (a+k1)/(b+kz), with the values of k1 and ks
dependent upon the exact nature of the properties whose relative frequency one
is measuring. If we consider a universe in which very many properties exist, k;
and ko become quite large, and the probability ratio obtained becomes almost
independent of empirical data, unless the amount of empirical data is very large.

A more detailed analysis reveals that Equation (1) (as modified by the con-
siderations of Section 6) does not give the objectionable ratio a/b, for small
values of a or b. This is true because, under these circumstances, the code
RABabk is not a minimal code. It is more economical to write the sequence
itself than to use the “R” method.

let us use the symbol V' to denote the identity code, so that if we use the
sequence VABBA as input to machine M, its output would be ABBA. Sym-
bolically,

M,(VABBA) = ABBA

or, more generally,
Mi(V~X)=X

for any sequence X.
The cost of coding AB using the “V” method is C4 + Cp + Cy
The cost of coding AB using the “R” method is

2

Ca+Cp+Cr+ 1092(m)

=Cy+Cg+Cr+1

The “V” coding method will be more economical than the “R” coding
method in this case if

Cy <Cgr+1.

In general, the raw cost of a symbol type (e.g., R or V) will be about equal
to the reciprocal of its relative frequency of use in the previous part of the code.



As a result, the V' notation will be used here if, in the past, the V notation
has been used more than 1/2 as often as the R notation. If short strings of
random symbols have occurred quite often in the sequence to be described,
then the V notation will be used very often, and will have a low bit cost.

If V has a very low bit cost, then if we want to extrapolate the sequence
AAB, the cost of AABB is Cy +2C 4 +2Cp the cost of AABA is Cy +3C4+Cpg.
The relative probabilities of A and B following will then be

9(=Ca+Cn) _ 2CB/2CA

This will be about equal to the ratio of the frequency of occurrence of the
symbol A and the symbol B in the sequence preceding the subsequence AAB.
If A and B have never occurred before, we might obtain the ratio 1, or if the
symbols A and B have other structural features, we might obtain some other
ratio corresponding to Carnap’s ky/ks.

However, if the present sequence is quite long, e.g., ABBABABAAABAA,
then the R notation is likely to cost less than the V notation, and the computed
relative probabilities of A and B following will be independent of their frequen-
cies in the part of the sequence preceding the part under present consideration.

In Section 10, an improved inductive inference method will be described, in
which all possible methods of describing a sequence contribute to its probability
rather than just the “minimal method” of description. Using this method, the
probability ratio (a + k1)/(b + ko) appears to be approximately correct. The
values of ki and ks are, however, not the same as those of Carnap.

8 CODING AND RECODING

The method used in coding a sequence is to first write a code description of it,
using any convenient symbols.

This description will sometimes contain the R and V' symbols of Section 7,
a space symbol, and various letters and numbers. The numbers are recoded by
special methods that take advantage of either the fact that the range of possible
values of the number is known, or else that the first digit of the number must
be 1, the second digit is more probably a zero than a 1, and so on.

The R V, and space symbols are recoded using the R notation,

If any regularities are found in the resultant code sequence, it is recoded again
in a manner that takes advantage of these regularities. The final “minimal” code
for a sequence will contain about an equal number of zeros and ones, and will
display no “significant” statistical regularities at all.



9 REPLY TO THE FIRST OBJECTION

At this point the reader may note that the original premises have apparently
been discarded entirely - that while the original idea was to devise a minimal
description for a sequence using an arbitrarily chosen machine, we have instead
made a description for a special machine that must be very narrowly specialized
to interpret that description!

To answer this criticism it will be necessary to modify the premises a bit.
Let us designate by .S, the sequence consisting of a A’s and b B’s. Unless the
sequence S is very tong, the present methods are not very useful for extrapo-
lating S alone, However, let us define S’ to be a very long sequence of symbols
containing all the kinds of data that a man is likely to observe in his lifetime.
It would be well if this man had a broad background in the kinds of material
that we will be extrapolating, but this is not absolutely necessary.

The present methods will be useful for extrapolating the sequence S ~ S,
Note that S’ need not have any material bearing directly on the sequence to be
extrapolated. The relationship of S’ to S will be seen presently.

We shall try to make it plausible that the last few symbols in the minimal
description of the sequence S’ —~ S will be largely independent of just what
computer is to be used, as long as that computer is a “universal machine” —
which is a kind of general purpose computer - also, that these last few symbols
will probably be RABabk, or equivalent symbols having the same bit costs.

First the concept of “universal machine” will be defined, A “universal ma-
chine” is a sub—class of universal Turing machines that can simulate any other
Turing machine in a certain way.

More exactly, suppose My is an arbitrary Turing machine, and Ms(z) is the
output of My, for input string x. Then if M; is a “universal machine,” there
exists some string, o (which is a function of M; and Ma, but not of z), such
that for any string, z,

Mi(a ~ x) = Ms(x)

«a may be viewed as the “translation instructions” from Ms to Mj.
Let us suppose that Ms is a machine that is able to perform the decoding
from the code string RABabk, to the sequence S, so that

My (RABabk) = S

Suppose that M;, a universal machine, has some other method of coding the
sequence S, so that

M;(D) =S

and that the sequence D is longer (has more bits) than the sequence RABabk.
Furthermore, let us suppose that the sequence S’ contains many subsequences



similar to S, in the sense that the same kind of coding method would apply.
Let us assume that the RABabk method of coding used by M, is, on the av-
erage, better than that used by Mj, so that on the average, it costs M; 3
more bits than Mj to code a sequence like S. if Ms’s coding method is in any
sense “optimum” (the method described is, indeed, close to optimum), then the
assumptions mentioned are reasonable.

If S’ contains 1000 sequences of “type S,” then M7 will take 3000 more bits
to code this part of S’ than will Ms. Let

My(E ~ RABabk) = §' ~ S

and
M(F)=58 ~S

be the normal methods of coding for M; and M,. Then
Mi(a ~ E ~ RABabk) =S ~ S

and if the string o contains less than 3003 bits, the code string &« ~ E —~
RABabk will be shorter than the code F', so the “minimal” codes for both M;
and M5 will terminate in the sequence RABabk.

The figure “3003 bits” was arbitrary. In general, o will have a fixed number
of bits, but the figure “3003” will be proportional to the length of the sequence
S’ ~ S. As a result, all universal machines will tend to code long sequences
ending in S by code sequences ending in RABabk , because coding methods of
this type will be shortest in the long run.

It will be noted that this latter statement on the similarity of minimal codes
for universal machines is not much more than a strong conjecture, with sugges-
tions of how a proof might, under certain circumstances, be constructed.

More exactly, if S’ is a very long sequence of a kind containing the kinds of
information that a man would normally observe in his lifetime and

S is a short sequence.

My and My are both universal machines.

G1, G2, Hy and H> are the shortest strings such that

Mi(G,) = &, My(Gs) = S,
Ml(Hl) == Sl — S, MQ(HQ) = S/ — S

NG1 is the number of bits in (1, with similar definitions for NG2 etc.
Then we would like it to be true that

Npg, —Ng, =Nu, — Ng,

for all fairly short sequences, S, and all pairs of universal machines, M; and
Ms.



The truth of this conjecture is a sufficient condition for the probability es-
timate of Equation (1) to be independent of just what machine was used (pro-
viding, of course, that it was a “universal machine”).

10 A FOURTH OBJECTION: THAT EQUA-
TION (1) CONSIDERS ONLY “MINIMAL”
DESCRIPTIONS

Another objection to the method outlined is that Equation (1) uses only the
“minimal binary descriptions” of the sequences it analyzes. It would seem that
if there are several different methods of describing a sequence, each of these
methods should be given some weight in determining the probability of that
sequence.

In accordance with this idea. we will modify Equation (1) and write the
probability that a, rather than b, will be the continuation of sequence T,
> 1—¢ NSai
> (%)

1=

—

lim

=0 21— e\ NSy
> (%)

=1

Ml(Sa,l) :Ml(Sag) :Ml(Sag) = ... :Ml(Saoc) =T ~a
The S,; are all the descriptions of T'—~ a. Similarly,
Ml(Sbl) :Ml(SbQ) :Ml(SbS) = e :Ml(sboo) =T ~b

N S is the number of digits in S;.

The limit ¢ — 0 has been incorporated into the equation to overcome the
objection in Section 5, that the sum of all the probabilities diverged. In Equation
(4) it may not be necessary for € to approach zero. It may be both expedient
and adequate to let it take some small value like 0.001.

11 LAST OBJECTION: THAT THE MORE DIS-
TANT FUTURE OF THE SEQUENCE SHOULD
BE CONSIDERED

The final objection that we will discuss at any length is that Equation (4) does
not consider in any serious way the more distant future of the sequence being

10



extrapolated. Consider, for example, the sequence abcdabedabedab. The next
symbol is probably ¢, and this is so because the sequence abcdabedabedabed has
a particularly simple description, and is therefore very probable.

We take all possible future continuations of the sequence into account in the
following further refinement of Equation (4):

i i (1 - €>N(5Tacn,k)i

lim lim &=Li=! 5

e—0r—oo g: o (]_ — €>N(STbC’"w’“)i
2

k=11i=1

Ch,r is a sequence of a symbols in the output alphabet of the universal
machine. There are r different symbols so there are rn different sequences of
this type. C,, j is the kth such sequence. k£ may have any value from 1 to r".

TaCy ) is the same as T~ a —~ Cy, 1.

(Stac, )7 is the ith description of TaC), i with respect to Machine M.

N(STaCn,k)i is the number of digits in (Stac, , ):-

It can be shown that Equation (5) also eliminates the Third Objection in a
very satisfactory way - i.e., the “bit wastage” in both numerator and denomi-
nator average out to be the same, and so they cancel. This cancellation does
not ordinarily occur in Equation (4).

12 AN INTERPRETATION OF EQUATION (5)

Equation (5) has at least one rather simple interpretation. Consider all possible
sequences of symbols that could be descriptions of all the things a person might
observe in his life. These sequences correspond to the sequences being coded in
Equation (5), such as TaC), .

Then a complete model that “explains” all regularities observed in these
sequences is that they were produced by some arbitrary universal machine with
a random binary sequence as its input. Equation (5) then enables us to use this
model to obtain a priori probabilities to be used in computation of a posteriori
probabilities using Bayes’ Theorem. Equation (5) finds the probability of a
particular sequence by summing the probabilities of all possible ways in which
that sequence might have been created.

This particular model of induction is somewhat similar to that of Carnap
(Ref. 1, page 562). Carnap restricts his discussions to only the simplest finite
languages, yet be is able to obtain some very reasonable results with this very
limited means.

Here, however, we use the full generality of description methods that are
available through Turing machines.
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A somewhat more general, and equally “complete” model may also be ob-
tained if we allow the input to the Turing machine to be any Markov chain of
nonvanishing entropy.

13 USE OF A SKEW INPUT DISTRIBUTION
TO OVERCOME THE THIRD OBJECTION

The above model for Equation (5) suggests a very natural way to avoid the “bit
wastage” inherent in the representation of numbers using any integral radix.

For Equation (5) we used as input to the universal machine, binary sequences
in which 0’s and 1’s were equally probable. In such a situation, the probability
of any particular input sequence was always a power of 2. However, suppose
that we use the following type of input sequence for the machine:

probability of 0 is § — 1/2¢

probability of 1is 1 —§ — 1/2¢

probability of termination of sequence is €

Here again, the “expected length” of a sequence is about 1/e. If § is small,
however, we can have very fine gradations of probability available in these se-
quences — much finer than the integral powers of 2.

It will be noted that the descriptions (i.e., input sequences to the machine)
of a given output sequence that are “most probable” are now entirely different
from the shortest (and therefore most probable) sequences that were used before
for “minimal” descriptions. There exists, however, a translation method, so that
it is possible to go from a “shortest” description using equal probabilities for 0
and 1, to a corresponding “most probable” description using the highly skewed
distribution.

Using this highly skewed distribution, it is possible to devise sequences that
correspond to any integers with arbitrarily little of the “bit wastage” that was
evident when an integral radix was used for representation of numbers. In
general, the lengths of sequences of highest probability in the skew distribution
that are needed to code a given text will be much longer than the corresponding
code sequences using a symmetric distribution.

14 APPLICATION OF THE METHOD TO CURVE
FITTING

The application of Equation (4) to numerical extrapolation by means of “curve
fitting” has been investigated to some extent. The problem is formulated in
the following way: We are given a set of pairs of numbers that correspond to
empirically observed data points — e. g., a set of pairs of temperature and
pressure readings of a gas. We are then required to extrapolate this data —
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i. e., given a new temperature reading, to obtain the relative probability of any
possible corresponding pressure reading.

An economical method of describing such a set of data points is to give an
equation that approximates the data, then give a set of temperatures, then a set
of numbers that give the deviations of the empirical pressures from the equation.

We could conceivably try to express the list of temperatures in more compact
form, but doing so would not affect the resultant probability ratios.

If the curve fits very well, the cost of the set of deviations will be smaller than
for a curve that fits poorly. The cost of describing the equation must also be
taken into account, so, in general, a 20—parameter polynomial could give a low
cost set of deviations for 20 empirical points, but the cost of the 20 parameters
would be high. There will exist some optimum number of parameters that should
be used, such that the total cost of the equation description and the deviation
descriptions will be minimal. Here we make use of the fact that it costs less to
code small numbers than large numbers of the same absolute accuracy.

If using polynomials for curve fitting has been useful in the past, this method
of description will have a low bit cost. Using unusual functions that have few
parameters in them, yet are complex to describe and have been used infrequently
in the past, will be very expensive to use fur extrapolation, so one would tend
not to use them unless they gave a very small set of deviations.

These latter notions are certainly what one feels to be true intuitively when
one is fitting a curve to empirical data. The present method of analysis seems
to put this intuitive idea on a quantitative basis.

An objection might be raised that the curve fitting method described is close
to one that assumes a very un-normal distribution of empirical error — certainly
a distribution quite different from that which is ordinarily observed.

If, however, in the sequence of data preceding the present problem, there
have been many empirical situations in which the deviations had a normal dis-
tribution, or if there are enough empirical points in the present problem. then
it will be less expensive to describe the deviations as a normal distribution
than to simply list them. As a result, we would obtain something close to a
mean-square-goodness-of-fit criterion — with the added feature of taking the
complexity of the curve used into account.

If the empirical data obtained corresponds to a known physical law, then
there will be much previous data to corroborate this law. In such a case, the
equation will have been used many times in the past, and will be correspondingly
less expensive to use in the present case.

If the physical law used has not been personally empirically verified by the
curve fitter through previous experimentation, and he simply read about the law
in a book, then the cost of the equation is somewhat more difficult to compute.
It depends, in part, upon the empirical accuracy in the life of the curve-fitter of
physical laws that he has read about in books.
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15 THE PROBLEM OF CONFLICTING LINES
OF EVIDENCE

An insurance company wants to determine the probability that a man will live
over 60 years, and has compiled tables of data to aid in solving this problem.

One day a man drifts into the office of the company and asks to be insured.
He is 50 years old, has had pneumonia, and both of his parents died at the age
of 95.

The insurance company has tables that tell the probability that a 50-year-
old man who has had pneumonia will live to 60. The tables give the probability
p1-

They have tables that tell the probability that a 50-year-old man, both of
whose parents lived to be over 90, will live to 60. The tables give the probability
p2.

They have no tables for 50-year-old-men who have had pneumonia and both
of whose parents lived more than 90 years.

How shall the company combine the data from the two tables that it has?

It might be argued that it is impossible — that one must have a table for
the coincidence of the three characteristics before one can make a probability
estimate. However, every day we are forced to combine evidence of various
kinds to make probability estimates, and in many cases the data is inadequate,
as in the above problem — yet we make decisions based on such inadequate
data. Indeed, it might be argued that there are few decisions that we do make
in which we have “adequate data.”

A very approximate analysis of this problem was made, using the coding
method of probability evaluation. The probability obtained that the man will
live more than 60 years is’

p(V)
D1 +P2+m .
(I1—p1)+Q—p2)+ zgg

Speaking very loosely, p(V') and p(R) are the relative frequencies with which
the R coding method and the V' coding method of Section 7 have been used in
the past. In the present case, p(V)/p(R) is probably much less than 1.

It is characteristic of the present method of induction that most probability
values obtained are dependent, to some extent, on sequences of events that are
apparently not very closely related to the events whose probabilities are being
computed.

It should be noted that the validity of Equation (6) is not very certain,
since it was obtained by using some very uncertain assumptions. These un-

IThis equation is incorrect. See page viii, paragraph C, in the Preface to the Revised
Version for a more satisfactory solution to the problem.
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certain assumptions need not characterize the method and are symptomatic of
the author’s present inability to always devise good approximation methods for
Equation (5).

16 GENERAL REMARKS ON EQUATION (5)
AND ITS APPLICATIONS

While Equation (5) is put forth as what is hoped to be an adequate computation
of conditional relative probability, the equation itself will not ordinarily be used
directly for probability computation - any more than the definition of a Lebesgue
integral is used directly in the numerical evaluation of integrals.

Instead, Equation (5) can be and has been used to obtain theorems about
probability from which actual probabilities may be calculated. Among the tech-
niques used are the discovery of coding methods that are simple to use, and
nonminimal, yet from which it is possible to obtain the same probability ratios
as Those given by Equation (5). The apparently ad-hoc number manipulation
of Sections 6 and 7 is an example of this, though a proof has not been given
here.

Minimal coding techniques do have important direct applications, however.
One of these is information retrieval. The minimal coding enables us to discard
information that is least relevant to prediction, or to whatever application the
coded information might have. Coded information that is most valuable for
prediction is also most likely to be correlated with other data, and for this
reason, in coding new data, we examine relationships between it and parts of
previously coded data that are of most value in prediction.

Another direct application of minimal coding is in the generalized hill-
climbing problem. Here, there is a set of continuous and/or discrete parameters
that must be adjusted to maximize tine value of a certain evaluation function.
Organic evolution is an important example of a hill-climbing problem with dis-
crete parameters. These parameters are the coded sequences that constitute the
chromosomes. The evaluation function of such a set of coded sequences is the
expected reproduction rate of the resultant organism.

The method used for hill-climbing in organic evolution of asexual organisms
is to make each new set of trial parameters a random change of a few of the
parameters of a fairly good organism. This random change corresponds to a
mutation.

While there is some reason to believe that the genetic code description of
the organism is not a minimal code, it shares with minimal codes the property
that a random change of one of the code symbols will yield a code sequence
for an organism that has a not-altogether-too-small probability of living and a
somewhat smaller probability of being a bit better than his parent.
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None of the computing machine simulations of organic evolution have
attempted representations of organisms using minimal codes, and it seems like
a reasonably good thing to try.
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