Unifying Gravity and EM by Analogies to EM

Doug Sweetser, 84, sweetser@alum.mit.edu, quaternions.com

Abstract:

Photons are generated by oscillating electrons. Gravity makes the planets oscil-
late around the Sun. A four dimensional simple harmonic oscillator might be able
to accommodate both modes of oscillation. Investigate an old hypothesis, that
gravity is similar to EM. Clone a Lagrange density for gravity from EM. The
field equations generated by the Euler-Lagrange equation can be written out
explicitly in terms of the electric and magnetic fields, and two analogs of these
fields and one other field that characterizes the diagonal of the 4-derivative of the
4-potential, A**. A problem with solutions to the field equations has been the
distance dependence of the derivative. The derivative of the perturbation of a
potential normalized to an arbitrary point has the correct form, a spring constant
over distance squared. The gravitational analog to the Lorentz force is solved for
a weak field. That solution can be rearranged into a metric equation that is con-
sistent with the Schwarzschild metric of general relativity to parameterized post-
Newtonian accuracy. For higher order terms, the two metrics could be distin-
guished experimentally. Derive Newton’s law of gravity by breaking spacetime
symmetry. Repeat the derivation, but look for a constant velocity solution. That
solution shows mass decays exponentially with distance. This may be a classical
gravity mechanism for the inflation hypothesis of the big bang.
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Unifying Gravity and EM by Analogies to EM

Outline for Proposal
1. Lagrange densities.
2. Fields and quantum mechanics.

3. Forces, metrics, and new physics.




The Big Picture: A 4D Slinky

Gravity and light form a slinky in four dimensions (three for space, one for time).
e A slinky wobbles.
e The Earth has wobbled around the Sun 4 billion times.
e Light is created by electrons wobbling.

Want a description of all the interactions in a volume (called a Lagrange density)
that can be used to create 4 differential equations (a 4D wave equation). The
solutions to those equations must then be linked to the simple harmonic oscilla-
tions displayed by gravitational and electronic systems.

Thought experiment: slow neutrinos could wobble through the Earth act as a
SHO, cycling to the other side of the Earth and back every 88 minutes. This is a
longitudinal wave, because the acceleration is in the direction of the velocity.
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Must Do Physics
e Gravity.
o EM.
e (Quantum mechanics.

e Experimental tests.
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Must Do: Gravity

1. Fy=—Gmy R Like charges attract.

2. +m One charge.
3. p=V2%¢p Newton’s gravitational field equation.
4, %: — GR#R Newton’s law of gravity under classical conditions.

oM GM GM, dR?
5. dr=(1-29M 1 9(GMy2) g2 (14 9GM) 4E2

Consistent with the Schwarzschild metric.
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Must Do: Electrodynamics

Like charges repel.

Two distinct charges.

Maxwell source equations.

Maxwell homogeneous equations.

Lorentz force.




Must Do: Quantum Mechanics
1. Unified field emission modes can be quantized.
2. Works with the standard model.

3. Indicates origin of mass.
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Must Do: Experimental Tests
1. LIGO (gravity wave polarization).
2. Rotation profiles of spiral galaxies.

3. Big Bang constant velocity distribution.
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Will Not Be Doing
e Review of previous efforts to unify gravity and EM.
e Regenerate Einstein’s field equations, G = 8nT*.

Don’t bet against Einstein. Einstein viewed general relativity as an intermediate step. The last
half of his life was devoted to two tasks: unifying gravity with EM, and understanding why
quantum mechanics is the way it is, the logical reason driving it. He was willing to reconstruct
physics from the ground up so long as guiding principles were respected. These lectures are
devoted to unification. Another lecture series would be required to understand the logic of
quantum mechanics, and I do think I know where the answer to that riddle lives.




Lagrange Densities

Where all mass, energy, and interactions are in a volume.
1. EM Lagrange density.
2. EM to gravity by analogy.
3. Gravity Lagrange density hypothesis.
4. GEM Lagrange density.

5. GEM Lagrange density in detail.
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EM Lagrange Density

Where all EM energy is in a volume, no gravity.

Cov=— 2 L Unpp_ L guv_ pv.m (A — A, )

W RV 4c?
°* — % Energy density of mass in motion.
U : : : .
e - %/T”A“ Energy density of electric charge in motion.

¢ - L(AM'V — AH) (AM,V - AI/,M)

4c2

Energy density of antisymmetric change in the potential.

The pattern: rank-0, rank-1 contraction, and rank-2 contraction.
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EM to Gravity Analogy
° —— No change for mass in motion rank-0 term.
e —¢—>++vVGm Electric charge to mass charge.
e Change field strength tensor’s symmetry.
1., —; Derivatives to contravariant derivatives.
2. A-A— A+ A Anti-symmetric to symmetric tensor.

There are two sign changes, both are minus to plus. The first from -q to +m makes the law attractive. The
second in the tensor changes the symmetry.
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Gravity Lagrange Density Hypothesis

Where all gravitational energy is in a volume, no EM.

VGm U 1 . "
EG:—%+ 02‘7 TNA“_ @(A“’ +A ’“)(Au;V"'AV;u)

o — % Energy density of mass in motion.
o + ‘/E;n %A“ Energy density of mass charge in motion.

* - L(AW/ + AV (A + Avy)

4c2?
Energy density of symmetric change in the potential.

Only the rank-1 and rank-2 contraction terms have been changed by the analogy.
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Unified Lagrange Density

LorMm 18 the union of £4 and Lry.
e Mass in motion term is a union, not a sum.
e Sum charges in motion terms.
¢ Sum and simplify field strength tensor terms:

1., —; Derivatives to contravariant derivatives.

2. AWYA,., — AMYA,.,=0  Cross terms drop.

3. AWYA,., = AVFA,,, Contractions are equal.
—VGm) U,
QGEM__%_%T#AH 1oAmvA

=
£ = — ® - e—9)e « - :
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GEM Lagrange Density in Detail
Goal: Get to individual terms, no indices.

Method: Expand, contract, and repeat.

1. Start with the GEM Lagrange density which has 144 + 16 final terms:

2. Expand U, , A*. Apply the definition of a contravariant derivative to a
contravariant vector (A#Y =AY —T' # A®) to A¥Y and A, :

m \/Em u v V AT ag
g=— 1 - Ui (o, — ) (g, AY) — 5 (A — D WAT) Ay~ T7 1 A,)
3. Contract U, with A*. Multiply out final term:

Ez_ﬂ_( Gm)(cd) uAu)

% c2V



1 14 V AW V AT O
— L (ABYA, T WATA, , — T AT A,

2c

4. Expand A*" and A, , . Work in local covariant coordinates where I'=0:

T— T
=5 - S ed " AY) — 5 (5~ V)6, AY) (5, V) (6, - AY)
5. Contract, using lines as a visual guide:
=5 = g (eh v AY) — (5 (V)2 = (5" 4+ (VA))
6. Write it ALL out:
8= = /1= (G - (- () - oo = Grda— Gy~ A
=G = (G = (G = (57 = (G + (5P + (2 + ()
0A,

_ (3Ay 2 (9Ay\2 | (9Ay\2 3Ay)2 _ (%)2 4 (%)2 + (%

cz?t) +(6_:I:y) +(#) +( oz cot ox

L]
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Summary: Lagrange Densities

Math:

__m _(@=vVGm) Uy 4y 1
Lorm = % 2V 'yA 2c2A A

Pictures

e

&:—'1-.'-— =2 a 4,5
.3 Bt .

Ay

)%+ (

0z

)%)

)



Fields and Field Equations
The players.

1. Euler-Lagrange equation applied to the GEM Lagrange density.
2. Classical fields to represent A*".
3. Classical fields to represent A*" in detail (their components).
4. Classical field equations:
a) Gauss’ law and Newton’s [relativistic| gravitational field.
b) Ampere’s law and mass current.

¢) Vector identities.
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The Players

A table of the players in fields and field equations. The new analogous fields for
gravity (€,b ,and g#) will be introduced subsequently.

Rank Symbol Name
0 £ Lagrange density
1 c% = c(%) ¥ Field equations
1 AW Potential
2 AwY Derivative of the potential
2 E , €, B , b , g* Classical fields which constitute A*"
1 %, V X E,%, %, Field equations (above) as classical fields
V x B , VKb , Vg#

Apply Euler-Lagrange to GEM Lagrange Density

oL oL
=

, W_ W)’V’ ertten Wlthout

1. Start with the Euler-Lagrange equation
indices:
ae 8, o 8, og 8, g 8, ag
o —ol5a) - ) - () - )
Oz

0t \ (92 T oz a(— 22y oy a(— 22y T oz

o6 €



08 _ (D98 y_ a( as )_a( 08y _ 00t

0L o oL 14] oL 0 0L o oL
CEZC(E(B(%))_E(O(—MJ))_5(3(*%)) az(a(_a,ﬂ)))

O

9y
oL /0 oL 1) oL 0 oL 1) oL
9A, —C( (8(6;:)) 3,5(6( 6Az)) 39(6( 6Az)) 32(6( BAz)))

2. Write out GEM Lagrange density without indices:
m ox 0z —VGm ox oz 0z
== B(1- (5 - (3P () - s — S~ Gra, — A

1% cot cot cot c2V ot ot

— 52— (502 = (52— ()2 — (T + () + () + (52)*

cot ox oy 0z cot or Oy Oz
2A oA 2A 0A DA, 94, DA, oA,
— (G H (G2 (G2 + (G = ()2 + (5 + (5,2 + (5)9)
3. Apply:

-VG %*¢ %¢ %9
_(g—vGm) Vm): e 8z2+ a7 T Con
(a=VGm) 85 _ 0%As _ BPA, _ 0As _ O,

Vv cot cor  Caz  Cor T o2
(q=vVGm) y _ %A,  0°A,  0°A, 04,

Vv cot coz Caz Capr  Coz

(g—VGm) 8z _ 8%A, 824, 824, 824,

Vv cot  cor Caz  Capr T (o2

4. Executive summary:

JE=[2AH where Jn—(a=vGm) U"

j-l—tﬂ—:h:-_ é: %[Aﬂ,hﬁ’?]dl_"‘ CH:_’:;A
Classical Fields

The classical fields E and B together make up the antisymmetric tensor (A*Y —

LR

Av>#). Introduce three new fields, € and b which have EM counterparts, and a 4-
vector field g*for the diagonal components of the symmetric tensor (A#* 4 AV:#).

o E=- %’Z — c@qﬁ Electric field.

o &=+ % — c@qﬁ Symmetric analog to electric field.

5 DA, 8A, | DA, DA, | DA, 0A,\ _ = 7 :
e B=c(0,+ R P Pl e ay)_CVXA Magnetic field.

Symmetric analog to magnetic field.
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. gN:AIMM:(%,_C _

oz’ Sy

04,  0A A, :
- ) Diagonal of A*Y.

5 fields, 3+3+3+3+4=16 degrees of freedom.

Classical Fields in Detail

1. Start with the asymmetric unified field strength tensor, A*¥, written as a

matrix:

p=0¢ p=A, p=A4, p=A,

v_ 0 o9 0A, 0A, O0A,

T ot ot ot ot ot
Ve _p0 _ 0 _ 0A _ 04y _ 0A.
o oz or ox or ox
v e} o0} OA, 0Ay OA,

V=—cr —Ccr- —c —c3t —c
Oy oy oy oy oy

o d¢ OA dA 0A
,]/__ — _ _r _ xr _ Yy _ ¥4
- C@z Caz CBZ Caz 0z

2. An antisymmetric and symmetric sum equal to A*:¥:

A,  0¢ 0Ay 04 A, _0¢
0 5 T Coc a T Coy ot " Co.
8 04 0 A 04s OA 04,
(A“"’—A"’“)/2 _ ox ot ox oy ox 0z
76%751% 7c6A”+c% 0 7caAz+ A,
Oy ot oy or Oy Oz
8¢ OA. 8As  OA. 0Ay 04,
“C% "o % %% ¢ TC% 0
8¢ 04s _ 09 04y _ 09 4. _ .0¢
at ot oz ot dy at oz
8¢ | 8A, DA, 0A,  BA, DA, cOA,
(Au;V+AI/“LL)/2: _Cﬁz ot _Cam _Caz T % oy _cam T 8z
¢  0A, DA, OA, DA, A, A,
co—+ —c==— —c —c—==—-¢
Oy ot Oy oz Oy oy Oz
8¢ | DA, DA,  BA, DA,  0A, 0A,
¢t ¢ ~Ca ~Ca Coy — %

3. A®Y written in terms of the gravitational, electric, and magnetic fields:
gt €x — E:c ey - Ey €z — Ez
ez + Fy Jz b,— B, by,+ By
ey+FEy, b,+ B, gy by— DB,
e,+FE, by—By, b,+ B, g,

12



Gauss’ Law and Newton’s [Relativistic] Gravitational Field

Method: % (EM law + gravitational analog) + diagonal terms = field equations.
¢—VGm _ 1,8 & | & = Ogt
L1 9. 9% A, o oA 0%
= 5(— %aor ~Comr — agar  Coyr  dz0t  Co2

A, ¢+62Ay a ¢>+ 9%¢ 0%¢
ozdt 6m2 Oy ot 62675 022 cot?

_ P 0 P Py

+

T cot? CaxZ Oy? 8z2

e Newton’s [relativistic| gravitational field equation results in the physical

situation where there is no electric charge density and no divergence of the
field E.

e Gauss’ law results in the physical situation with no mass density and no
divergence of the field €.

Implications for forces: Newton’s field law implies an attractive force for mass, while Gauss’ law indicates like
electric charges repulse.

Ampere’s Law and Mass Current

Method: Same as previous.

a—vVGm\7 1 OF
(T)Z_E( cat +VxB+V®b)+Vug
1(3214 8%¢ 924, +a¢ aAZ+a2¢)
2\ cot? otox’ cot? ooy’ cot? otoz
l( ¢ %A, 9% 8%A, 6245)
2 cat2 T oo’ c6t2 ooy’ cot? otoz
3( 6 Ay %A, i 24, + + _9%4, n 24, 94, i
2 8y 61: 022 020z’ 0z By 6x2 ox 6y ’ ox? 0x 0z Oy?
62A )
Oy oz
4 g( 9?4, %A, B%A,  9%A,  9%A,  0%A,  3PA,  3*A,  9%A,  9PA,  9%A,
2 Oy2 Oyox 022 020z’ 822 0z0y O0z2 0zxdy’ Ox2 Or 0z Oy?
62Ay)
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A, A, auz)

ox2 )’ ox2 "’ O0x2

+ ¢(
=[P4
e A pure mass current equation results in the physical situation where there

is no electric current density no time change of the field E and no curl of
the field B.

e Ampere’s law results in the physical situation where there is no mass cur-
rent density, no gradient of the field ¢g* and not boxed curl of b.
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Homogeneous Equations (Vector Identities)

Vector identities or homogeneous equations are unchanged.
e V-B=V.-(¢VxA)=0 No magnetic monopoles.
] %%—ﬁxﬁzgﬁxg—%x%—%xc@qﬁ:a Faraday’s law.

No obvious vector identity analogs for gravitational fields found yet.

Summary: Field Equations

-
W

Math:
JHh=[2A+
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Quantization
1. Classical physics versus quantum mechanics.
2. Momentum from classic (not quantum) EM Lagrange density.
3. Quantizing EM fields by fixing the gauge.
4. Quantizing EM by fixing the Lorenz gauge (Gupta/Bleuler method).
5. Skeptical analysis of fixing the Lorenz gauge.
6. Momentum from GEM Lagrange density.

7. GEM quantization.

2
R . 3 LB et
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Classical Physics versus Quantum Mechanics

Classical physics:

o A,=10 A,=8 m,=24 Observables are numbers.

o A, m,—m,A;=0 All observables are independent.
Quantum mechanics:

o Ay Y)=10 Ayl)=8 m,|)=24 Observables are operators that
act on the wave function v

to generate a number.

0  Most observables are independent.

o A A Y) — AyA|Y) =[As, AYl|Y)

[Ag, A,] is called the commutator.

o [A,, m)|Y)#0 Conjugate observables

15



are not independent.

Conjugate observables, like the potential and momentum, must have a non-zero
commutator to quantize a field.

i P‘“} _Q ,1{‘

A e ae® ATTRAS( e
s R
A_u ﬂi? ¢ @ A‘I’52- ¥
Classical Qumatvt um

Momentum from Classic (Not Quantum) EM Lagrange Density

1. Start with the EM Lagrange density written without indices.

Lpm=— % - %%A“ - ﬁ(A’W — AV (Apw — Au,p)
= (i (o (B (T O o Oy, Oy By
—3(( —@P-GP-@EP-CGEr P
—(FP+ (50 (G- + G+ (B

B 281475 op 28Ay op 28142 op 26Ay 0Ay 28142 0Ay 26Az 6Ay)
cot O cot Oy cot 0z 0z Oy ox Oz oy Ox

2. Calculate momentum:

. / 0L I~ OA; o8¢ OA 8¢ OA, Op
m=h GaﬁA”_h G(O’ c8t+£’ c8zl+8_y’ c@t_l_a)
cdt

Energy-momentum vector.

3. Momentum cannot be made into an operator:

[Ay, m]|) =[A4,0]|¢p) =0  Energy commutes with its conjugate operator.

1Y, =0

Quantizing EM Fields by Fixing the Gauge

16



An EM gauge is a relationship between ¢ and A that does not change the
Maxwell equations. Examples:

—

o trace(A**)=V-A=0 Coulomb gauge.
o trace(AHV)= %+ V-A=0 Lorenz gauge.

For EM with no gravity, one is free to assign arbitrary values to the diagonal of
the antisymmetric field strength tensor.

trace

i
+
+
+

Quantizing EM by Fixing the Lorenz Gauge (Gupta/Bleuler method)

Fix the Lorenz gauge in the EM Lagrange density.

1. Start with the Gupta-Bleuler Lagrange density written without indices:

Lo p=— = — U”A“ QCz(AM ) __(Al“j Ay,u)(AM,V_AV,M)

YV v ¥ 4c?

z —\Fm ¢ 4 Iz
= =1 (G- (- (5 — = o — A — G, = oA

(% - (3§> (23) (22 (g2 (e g (eyzy (e

— (%12 +(

0A DA 2A 9A, 9A, DA, DA,
5) (G0 (50— () + (G + (52 + (50)?

_26Am6¢_26Ay6¢_26A26¢_20Ay6A 28A 0A; 28Az8Ay)

cot Or cot Oy cot 0z 0z Oy oz oy Ox
0p 0A; ¢ BAy 6¢> BA OA, BAy OA; DA, 0Ay, 0A,
+2 T 2 2 +2 250 2%,

2. Calculate momentum:

_ o - 8 O0A, 0p A, , 0p
= h\/_ aAu—h\/a(_E_ A’cat+%’cat+ay’cat az)

c@t

Energy-momentum vector.
3. Momentum can be made into an operator:

Using the Euler-Lagrange equation [not shown|, the equations of motion are iden-
tical to those of Larm!
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Jr=[PAk

Reference: "Theory of longitudinal photons in quantum electrodynamics", Suraj N. Gupta, Proc. Phys. Soc.
63:681-691, 1950.

Gupta/Bleuler Quantization Method

Results of quantization method:
e Four modes of transmission:
1. Two transverse waves.
2. One longitudinal wave.
3. One scalar wave.
e Transverse waves are photons for EM.
e Scalar mode of transmission called a "scalar photon".

e "Supplementary condition" imposed to eliminate scalar and longitudinal
photons as real particles, so they are always virtual.

Skeptical Analysis of Fixing the Lorenz Gauge

1. A scalar photon is an oxymoron. Photons must transform like vectors,
even if photons happen to be virtual.

18



2. Eliminating an oxymoron cannot justify the supplementary condition.

3. A better interpretation for the 4D-wave equation of motion may exist.

Momentum from GEM Lagrange Density

1. Start with the GEM Lagrange density written without indices:

m 2 —VGm z 2
L=~ _(\/1 B (%)2_ (%)2_ (%)2 Ll 023 )(C¢— %Ax_ %Ay_ %Az)

_l((3_¢)2_(3_¢)2_(%)2_(g_f)g_(2%)2+(aafiw)ng(a;;)er(aaAj)z

— (Gl G+ G+ (3 = G+ (5 + (5 + (%))

cot ox 0z cot or

2. Calculate momentum:

GEM Quantization

e Four modes of transmission:

1. Two transverse waves.

19



2. One longitudinal wave.
3. One scalar wave.
e Transverse waves are photons for EM.

e Longitudinal and scalar modes are gravitons of gravity traveling at the
speed of light, generated by a symmetric rank-2 field strength tensor.

e General relativity predicts transverse waves, not scalar or longitudinal
ones. The LIGO experiment to detect gravitational waves will be looking
for transverse gravitational waves. GEM predicts the polarization will not
be transverse.

e Gravitational modes are coupled to /G and not hbar. This might get
around negative energy problem because gravity quanta are not emitted.

T‘d,ﬁ:“_ms
net ‘fou?l&ﬂl i'a"ﬁ.?

Summary: Quantization
Math:

oe 9 0A, 9A, 0A
H = G——=hv(G (- =2 == Ty L=
m=hvG WG (=0 ot cat cor)

Pictures:
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The Standard Model
1. Group theory.
2. Group theory by example.
3. The standard model.
4. The standard model Lagrange density.

5. Defining the multiplication operator.

.'JA?‘---'\
1 *‘ e
b ek e e Lk
% L o P iR
e ) F A4 : s s
.l::_-m-}, N I'.-:EI-G ) .
W P Sy 3 U= Su)=Suts)
2,56 X

Group Theory
Way to organize symmetry systematically.

Definition: A set S with a binary operation ( x or +) such that s; x so€ S for all
possible pairs of elements in S. A group has:

¢ An identity.
e An inverse for every element.
e Associative law holds.

If s1 X s9=s9 X 51, the group is Abelian, otherwise it is non-Abelian.

= (R,1) Teo stees
S« (Rfsol¥) Lol <t r

Group Theory by Example
e U(1), zx 2*=1, or unitary complex numbers.
I=(1,0) Identity is one.

2T =z Inverse is the conjugate.
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21 X 29=129 X 21 Abelian.

0 —a

U(a)= e( =) One number generates all elements.

e SU(2), ¢ x ¢*=1, or unit quaternions (4D analog to complex numbers).
I=(1,0,0,0) Identity is one.
g l=gq" Inverse is the conjugate.

Non-Abelian.

) Three numbers generate all elements.

The Standard Model

Predicts patterns of all subatomic particles and three of four forces in Nature:
e U(1) EM.
e SU(2) Weak force.
e SU(3) Strong force.

Says nothing about gravity.

AL = QUi <5Ut)

The Standard Model Lagrange Density

Describes all interactions of all subatomic forces in a volume.
Lsm = ZE’Y # Duw

. . T . AD b
Du = a,u - ZgEMvalu - Z.gweak7W;: - ngtrong? G;L

o Spinor matrix (no details provided here).

22



e g. Coupling constant to force.

o VY Generator of U(1) symmetry.
o =3 Generator of SU(2) symmetry.
o M08 Generator of SU(3) symmetry.

o A, W, GZ Complex-valued 4-potentials, two with internal symmetries.

L] L]
L] & &
@ = » L]
& w & =
L] L] L] B
£ = — & o Qe s - . = » ®
® @ = & =
o L L
. = ® @
a = a =
Defining the Multiplication Operator
Four components:
1. (a,bi)*=(a,—bi) Complex conjugation.
2. (¢,A)P=(¢,— A) Parity operator.
3. G Metric tensor.
4. |AT”| Potentials normalized to themselves.

Define multiplication of 4-potentials in the standard model as:

ﬂ AV*P _ gtt|At|2_gxx|A:v|2_gyy|Ay‘2_gzz‘Az‘2_guV‘AMA”Luqéu
|A] Al THY |A2

¥ s )F e
ay

f{:&‘ -'_‘- | ;

N T
LTS ,:'_:jl

"a\; ;’Ph,r.‘ Ha.
pacry

FRL Y e RA— e
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Multiplication Operator in Spacetime

* % A\,V4*|p 9w =1.0 In flat spacetime.

% —A‘:‘T 9w=10+6 In curved spacetime.

In curved spacetime, mass breaks U(1), SU(2), and SU(3) symmetry in a precise
way (circles get larger).
Y, 72, \° and the Higgs particle are not needed.

No new symmetry was added to the standard model, so no new particle can be
added. Instead, it may turn out that every pratice can "act like a graviton" when
it is involved with a distance measurement of the field.

_,-1','{ 1—. s - B
S Ty A ’ =% 93
5
' £=10+6
’jcc&- -'_‘ | I ;
. A A,
¥ oA L
Conjugartion Agihyrla
pacity
Summary: The Standard Model
Math:
ﬂ ﬂ _ gtt|At|2 - gXX|AI|2 - gyy|Ay‘2 - gzz‘AZ‘z - gl—LV‘A'u'AVLU-#:II
ja] A I = e
Pictures:
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Field Equation Solutions

1. 4D Wave equation solution in a vacuum.

2. Normalization and perturbations.

3. Normalized, perturbation solution to the 4D wave equation.

4. Derivative of the normalized, perturbation solution.

5. Only weak gravity.

LR UL

P R

4D Wave Equation Solution in a Vacuum

1. Start with 4D wave equation, no source:

[2A*=0

2. Guess a solution analogous to previous:

ﬂ

:0)

g

A=Y (224 g2+ 22— 1)1, 0,0,0) =G

C

3. Take derivatives:

%(l‘?_{_y2_|_22_62t2)—1:+2ct(x2+y2+22_62t2)_2
9

(P P+ A=A == 2z (0P 4 P+ R - Pt

(@22 = )T == 2y (a4 P+ 22— ) 7
2 (@ + P+ 22 = D) == 22 (a2 + P+ 22— P2

4. Take second derivatives:

25



D (+2to™ ) =+2(a? +y? + 22— A2 24+ 8 (22 + y? + 22 — P 2)

%( —2z0 ) =—2(22+ 2+ 22— A1) 2+ 82" (22 + P 4 22 — ) !

6%( —2yo ) == 222+ Y2+ 22— 1) 2+ 8y (22 + y? + 22— A1)~

2 (—2207Y =202+ y? + 22— A1) 2+ 82" (% + 2 + 22— 22!

5. Sum:

PAy_ PA_ PAy_ PAy_ QED

c2ot2 Ox? oy? 022

Practical value: Singularity is the lightcone, 2%+ 3% + 22 — 2t =0.

Normalization and Perturbations

Quantum mechanics cliché: normalize and look at perturbations for a weak field.
Gravity is weak.

1. Normalization:
e UwmwxsU@xsU)  Unitary requirement of the standard model.

AH . .
° AT Dimensionless.

2. Perturbations:
o A—A'=A+ké Linear restoration.
o k Spring constant (small number).
e Variable.
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Normalized, Perturbation Solution

1. Start with 4D wave equation solution:

Ar =G . 0) = Y52 (35,0)

@ \g2p 24,2 242

2. Normalize so that the magnitude of A*isequaltoone:

Ak 1 = =
Al === (arpraam 0= (1,0)

o

3. Perturb z,y, z,and ¢ linearly with a spring constant k:

At = = ( 1,k 1,k - 1k 1,k 16)
A VG G Gt P (G (Gt )
— 2 5
= \/% (Nlao): \/c* (%70)
e g BT
; E3 d“'l-
P £
: E -
Derivative of the Normalized, Perturbation Solution
1. Start with the normalized, perturbation solution:
[AH VG (e B2 (o By (o e (e B
2. Expand:

27
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A#:,/cg(l k k2 22 1 k k2 y2 11 k k222 1 ket k2c2¢2 ’6)
T z Yy Yy z z c c
(5+\/§02+ o4 )+(5+\/§o'2+ o4 )+(5+ﬁ02+ o4 )_(5+\ﬁ02+ o4 )
2 5
___¢ 90 O)
_\/6(0-127

3. Take derivatives:

% = CTZG :,34 k+O(k?) % % +O(k?*)  where the % is now part of k
= B E+O(R) - L O(R)

° % An inverse square distance dependence.

e k A small number with units of distance (G;ZQVI)

o kx,ky kz kt<o? Solutions are local, not global.

1
ey

L}
|
YV
FE Y ¥u
o7
?’Lr+

R

Vol ol
OOy
LU J L T ST

Only Weak Gravity

A potential that only applies to gravity not EM will have a diagonal field strength
tensor.

e The sign of the spring constant k does not effect solving the field equa-
tions.

e The sign of the spring constant k does change the derivative of the poten-
tial to first order in k.

e Therefore a potential that only has derivatives along the diagonal can be
constructed from two potentials that differ by string constants that either
constructively interfere to create a non-zero derivative, or destructively
interfere to eliminate a derivative.

i T
diagonal SHO A* = e

1

1

( +

Lo koyg L kyya o 1 k2yy 1 ketyo L _keyp (L kyya (1 kzyp (1 kctyo)?
(i (o i (o i (it T (LB (M- Ee (L4 By
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L L kzye 1 kyyo 1 | kzyy 1 kctyo L kzyo 1 24 (L 2 (L 2?

(GFHoa) (Gl H G+ (G0 (Gra)l+ (G -0+ (-2 (G5

1 1
xT z C + T Z C
et S G+ P G 5 = (Gt S (G P+ (g S (G 5= (=
1 + 1 )
kz k kz kc kz k kz kc
(5522 (Gt 2+ (G150 (5 +5)? (G- (G- B (Gt - (52

Notice the pattern for signs of k.

Take the contravariant derivative of this potential, keeping only the terms to first
order in the spring constant k. Remember the contravariant derivative flips the
sign of the 3-vector.

k
* 0 0 o0
2
2 Uoioo
AH:Vgc_ ai.’k
vzel 0052
0o 0 0o £

c2

This is an identity matrix times :—2, a simple end result that required much

work.

3l

Summary: Field Equation Solutions

Math:
k
£0 0 0
Apves S [0 500
VGl o 0 £ oo
k
0 0 0 &
Pictures:
1 ""b'!.
l—wemm—rF -
w B m
< 2
%*%
; £
C: ?.,
. E-_z
1 2-4 5
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Stresses, Forces, and Geodesics
1. Stresses:
a) Stress tensor.
b) Stress tensor of GEM.
2. Forces:
a) EM Lorentz force.
b) EM to gravity analogy.
c¢) Gravitational force.
d) GEM force.
3. Geodesics:
a) Effect of a geodesic.
b) Cause of curvature in a geodesic.

c¢) Killing’s differential equation.

v(-.-‘,-:ﬁ: i )

Stress Tensor

The rank-2 stress tensor is related to a derivative of a Lagrange density.
1. Start with a Lagrange density:
£: f(AU,AU,I/)
2. Take the derivative:

0L 0L
27“ e _aAo'AU’“ _|_ aAO',VAU’y,u

3. Apply the Euler-Lagrange equation ( ;ﬁ, = aif,,,)”’) to the first term.

Change the order of partial derivatives in the second term:
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)VAU[L+ oL Aap,u

4= (53 DATY

aAD' v
4. Apply the chain rule to condense into one term:
= (o) A7)

ATV

5. Define the rank-2 stress tensor as the stuff inside:

Th, = (505;) Ao

AO’I/

Stress Tensor of GEM

1. The stress tensor definition: T#, = ( A7 02 ) Aom
2. GEM Lagrange density:
m (g VGm) o
EGEM:_,Y—V—(qT—”A“— 62A ’ AU’V
3. Apply
T — % Ay AT

4. Write it all out. (oops, 128 differentials, try just one).
1,,0 0A, dA, DA,
T =—3((50)7 — (%)= (50— (509

— (= g+ (920 — Ea)?+ (90— Ey)? + (90— E.)?)

Caveats:

o T°,=FE?+ B?%in EM. It is unclear what the difference means. The B?
terms are in a different section of the stress tensor.

e TH,— F* There should be a path between the GEM stress tensor and
the relativistic force, but I have not figured it out yet.

VR T

EM Lorentz Force

The Lorentz force is caused by an electric charge moving in an EM field. The
effect is to push particles around.
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p U, v v\ OmU#
FEM—(JT(A” — AVH) = a7

e The cause is electric charge times the velocity contracted with the antisym-
metric field strength tensor.

e The effect is to change momentum with respect to the interval 7.

e If the sign of charge is inverted (¢ — — q), Fj flips signs, so there are
two distinguishable electric charges.

e Like electrical charges are forced away from each other due to the positive
sign of the force.

EM to Gravity Analogy
e —g—++vVGm Electric charge to mass charge.
e Change field strength tensor’s symmetry.
1. A-A— A+ A Anti-symmetric to symmetric tensor.

2., —; Derivatives to contravariant derivatives.

o Ak A
It
“ufex
iy
ol
LN b R by
I 4]
W -
oy i 4
ity -1

Gravitational Force

The gravitational force is caused by a mass charge moving in a gravitational field.
The effect is to push particles around.
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Fi=—

\/am UV(AM;V+AV;M) — omUH

¢ orT

The cause is mass charge times the velocity contracted with the symmetric
field strength tensor.

The effect is to change momentum with respect to the interval 7.

If the sign of mass is inverted (m — —m), F§ is invariant so there is one
distinguishable mass charge.

Mass charges are forced toward each other due to the negative sign of the
force.

GEM Force

The GEM force is the sum of the gravitational and EM forces.
Flgy=—(VGm—q) %AW/_ (VG m+q) %AVW: 37:;;]“

Flem=Ft if ¢=0 The GEM force is the gravitational force if the
electric charge is zero.

VGm
Vhe

The GEM force approaches the Lorentz force if the mass charge is small
compared to the fundamental electric charge (n vhe, where n is an integer
for the number of quanta of charges). For one electron:

—0

FgEM_)FgM as

6.672107 11 a1 03
PR kgm23z; S 9.11210~°> kg =1.67210~
LoxlU™ 2% ———o.00z —_
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Effect of a Geodesic

A geodesic is the path of zero external force. Investigate the change in momentum
(or effect) term of Ffpy.

1. Start with the change in momentum set equal to zero. Apply the chain
rule to expand:

amUH oUH om
= = [ A
0 T m or +U or
0 . UM
2. Assume 5= =0. Use the chain rule to expand %
UM oU* dz¥
O=m—ZG—=m- 5—=mU",U

3. Apply the definition of a covariant derivative of a contravariant vector
(normal derivative + change in the metric, A* ,=A* ,+T*,, A®):

8%zh
S+ mIH,, U U

0=mU" ,U" + mI*,,U"UY =m

If any acceleration is seen without a force (m %ﬁ:# 0, Ftgn=0), then the effect
is entirely due to the curvature of spacetime (mI'*,,U"U¥#0).

Cause of Curvature

Every effect must have a cause. Explore the change in potential (or cause) term.

1. Start with force set equal to zero:

0=—(Gm—yq) %A‘“”—(\/@m+q) %A’”“

2. Apply the definition of a contravariant derivative of a contravariant vector
(normal derivative - change in the metric, A#Y = A" — ', # A@):

0:—(@m—q)%A“y”—(@m%—q)%A”v“
—\/am%Fw‘“’Aw—l-q%Fw"”Aw—\/@m%Fw”ﬂAw—q%Fw”"Aw

— (Om— ) BAn (Gt q) Ao Ve T A
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Curvature is coupled directly to mass, not to q.

Any curvature of spacetime without a force (2m % Lot A% +0, Fipv=0) is
caused by change in the potential which are coupled to both the mass charge and
electric charge.

General relativity provides a way to calculate curvature by comparing two nearby
geodesics using a tidal effect. Because general relativity lacks a means within the
geodesic to calculate the cause of curvature, general relativity is incomplete.

4 !
| | = ) _'.I. Lo

Killing’s Differential Equation

If Ftpy=0, then a A% 4+ A #=0. This is a generalization of Killing’s differen-
tial equation where = =1. The solutions are known as Killing vector fields.

The implications of this observation are not understood by me at this time.

v =
B L

Summary: Stresses, Forces, and Geodesics

Math:
Fpy=~(VGm—q) %AW ~ (VG m+q) %Am = BTZT
Pictures:

v(-.-‘,-:ﬁ: - )
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Relativistic Gravitational Force

1. Weak field approximation.

2. Exact solution.

3. Exact solution applied.

4. Schwarzschild metric.

5. Schwarzschild versus GEM metric.

[

)
1 b A o ;:1'-’
AR et 'z_?z.!
: ol \'Q‘ ] —tdf 1[‘__.;* é‘ -
oy bt | "
w < ”
1 2 3 4,5

Weak Field Approximation

1. Start from the gravitational force law:

omUH

F=—VGmZ(Arw 4 Avity =21

2. Assume local covariant coordinates ( ; — , ):

omUH

Pt = — VG Ue(Amo 4 Avw) = 2t

3. Recall weak gravitational field strength tensor:

A

Q
o o o=
Q
© o= o

o= o o
MESISIS e

4. Check units of A*" to the derivative of the normalized potential:

v VI3 ym L
VG AR T =
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9 [AX]
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L
’\/‘-)—
t

1 _L
t 2

5. Substitute the normalized potential derivative into the force law, noting
the units and the sign flip on the contravariant derivative. Expand the

—

velocities, Uy, — (Up, —U) and U* — (Up, U):

~ 10mUyp amU
>_( or 87')

- k
Fi=-me (5 -D( 7 )

6. Contract the rank-1 velocity tensor with the rank-2 derivative of the
potential:

k k2 amUy OmU
Fg=m(= U0 zU) = (555 %5

7. Substitute ¢?72 for — o

k U kU OmUy omU
Fh=m(52, - 55) = (%52, 200

Warning: The relationship between o? and 72 is simple. What gets tricky is the
relationship between o and 7, because there the signs are "free" (+£ioc— +ec7).

Exact Solution

The gravitational force for the weak field is a first order differential equation that
can be solved exactly.

1. Start from the gravitational force for a weak field:

k U kU dmUy OmU
Fe=m(5 2~ 52) = (55 %)

2. Apply the chain rule to the cause terms. Assume Uy %—T: U ‘9—’::0.

Collect terms on one side:

oUs .k Uo

a0
(m 57 —mog—m s +m 1) =0

3. Assume the equivalence principle. Drop m:
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(%o _ k Uy 00 K Uy_

or e or Toe
4. Solve for velocity:
k k

(Uo,U) = (uge =, e’ =)  where (uo, @) are constant velocities.

5. Contract the velocity solution:
k k
U‘LUM:uﬁff_?;—'LT2 et?er
6. There are four constraints on the contracted velocity solution for flat
spacetime (k— 0, or 7 — 00):
UrUu=(uo, @) (uo, —1)

8t BR\, 08t OR\ __ c2(0t)2—(BR)?2 _ o
—(C or’ 87')(0 ar’ 87')_ (8t)2—(8—R)2 =c

—

: . o o _OR
True it and only if:  wp=c3,, U=

The integration constants (ug, @) are the velocities in flat spacetime.

7. Substitute c% for uy, %—f for # into the contracted velocity solution.

Multiply through by (%)2:
. .
(B7)2=e *er (0t)2 — e er (2)2

This is a unique algebraic road to a metric equations. The logic will have to be
looked at by mathematicians.

e k=0,or r—oo Flat spacetime.

k
o ¢l Curved spacetime.

Exact Solution Applied
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Apply to a weak, spherically symmetric, gravitational system.

GM L3 t2
k= =L

° =—F WMz = Gravitational source spring constant.

o 2=R?—(ct)2=R" Static field approximated by R'.

e |o|=|cT|=R o and c7 have the same magnitude.

o (+i0)?=(+cT)? To make a real metric, choose ¢ to be imaginary.

Plug into the exact solution:
GM GM =

(Or)2=¢ " @r (9t)2— ¢ 2r (22

Cc

£ = )

SR

Schwarzschild Metric

The Schwarzschild metric is a solution of general relativity for a neutral, non-
rotating, spherically symmetric source mass (derivation not shown). Write out
the Taylor series expansion of the Schwarzschild metric in isotropic coordinates to

. . GM
third order in ——.
cR

Schwarzschild metric:

GM GM 3, GM GM 3/ GM 1, GM OR
O1)=(1-25+2(55)"— 5 (Gp)) 01— (1 - 255+ 5 (55) + 5 (5R))(5)?

The five underlined terms have been confirmed experimentally. Tests include:
e Light bending around the Sun.

e Perihelion shift of Mercury.
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e Time delay in radar reflections off of planets.

CANEINC I VI

T AT B
bl i,i_ :l;?__‘ 25.1 5 535
-l L a5 -5

Compare Metrics: Schwarzschild to GEM

Write out the Taylor series expansion of the Schwarzschild and GEM metrics in

. . . . . GM
isotropic coordinates to third order in ZR

1. Schwarzschild metric:

GM GM 3, GM GM 3, GM 1, GM
O7)=(1-255+2(55)°— 5 (G0 — (1 —2557+5 (55) +5(57)°)(OR)?

2. GEM metric:

(0r)?= (1 -2 57 +2(53)° — 5 (GR))002 = (1 -2 57 +2(53)* + 3G ()

Compare the two metrics:
e Identical for tested terms of Taylor series expansion.
e Different for higher order terms, so can be tested (not easy).

e GEM metric is more symmetric.

(@ o+ Y o+ Y o

i = & L5

GR :L.L 'l& 25.25 5.5
o -2, 15 -5

E7 z B | W
0 T N
A 2 2 '3
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Classical Gravitational Force

1. Breaking spacetime symmetry.

2. Newton’s gravitational law derivation.

3. Need for new classical solutions:
a) Problem statement for rotation profiles of spiral galaxies.
b) Solution requirements for rotation profiles.
¢) Problem statement for the big bang.
d) Solution requirements for the big bang.

4. Constant velocity solutions.

I b5 ' ! ’_.‘._:. - ._
b D™ gea (27 -
. - i—:——" R L 1]

Breaking Spacetime Symmetry

Spacetime symmetry must be broken to go from the relativistic weak gravitational
force to a classical force for both cause and effect.

Contrast the relativistic geometry of Minkowski spacetime with the geometry of
Newtonian absolute space and time.
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Minkowski Spacetime Geometry Newtonian Space and Time

True, Elegant Utility Accurate, Practical
(01)%=(dt)* — (dci;y Interval distance? =d R? £ f(t)
c=1 Speed of Light c=00
= ot AR . =\, Ot oR 5
U0, U)=(c 55 %,) Velocity (Uo, U) = (577 Ca1r7) = (0, ¢ R)
aUy oU a2t 92R . aU, 0T 9?2 R
(5 5-) = ( 8—72, 57 Acceleration (52 5-)=(0,¢ W)

|
2 S

Newton’s Gravitational Law Derivation

1. Start from the gravitational force for a weak field:

k kK U ) amU
=m0 = 5 D) = (M, T

2. Apply the chain rule to the cause terms.
om 7 Om .
Assume U() o7 =U WZ 0:

k U kU U, aU
Fo=m(5 > —a7)=m35my))

3. Break spacetime symmetry:

~

o (UyU)— (Up,U)=(0,cR)

auy, 8U R
(55 5,) — (0, a1rp)

E B 2R
Fg:m(07_ﬁR):(0’mCQa|R|2)

GM)_

4. Assume the gravitational spring constant (k= =

GMm 3 2R
Fg: (Oa_WR):(OamC23|R|2)

5. Substitute: o2 for — ¢272 in the cause term.

Substitute: — ¢? (%)2 for (%)2 = (%)2 in the effect term.

F= (0, %Mm R = (0, — m 2

or?

6. Assume the static field approximation: 2= R? — t2> R".
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0 O
ar2 — 912°

GMm )= (0,-m%ZE)  QED

R2

Assume the low speed approximation:

Problem Statement for the Rotation Profile of Galaxies

The momentum of stars in thin spiral galaxies has two problems:

e The flat velocity profile problem.

After attaining a maximal speed consistent with Newton’s law of gravity
near the core, the velocity profile stays flat with increasing distance.
Newton’s law predicts a "Keplerian" decline for the velocity of the outer
stars.

e The stability problem.

Thin spiral galaxies are mathematically unstable to small disturbances
along the axis which should lead to collapse.

Solution Requirements for Rotation Profiles

Requirements for a solution:
1. Stable mathematically to axial perturbations.
2. Same velocity for all outer stars.

3. Describes the change in mass distribution in spacetime, which falls off
exponentially with distance (2 x 3= Amomentum).

4. Fits every observational constraint.

Problem Statement for the Big Bang
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Big bang cosmology has two big problems:

e The horizon problem.

All ~ 1083 separate, independent spacetime volumes of the early Universe
must travel at the same velocity to create the uniform black body radia-
tion spectrum seen in the cosmic background radiation.

e The flatness problem.

The initial conditions must be tuned to one part in ~ 10%® so the mathe-
matically unstable solution lasts 10'° years.

ln'l- AEJ’ - ".-ﬁ;\'

¥ T
i @ :

+

g W

X |o®2
Dhsernhi!—
Lniverse

Solution Requirements for the Big Bang

Requirements for a solution:
1. Stable mathematically for initial conditions.
2. Same velocity for all independent regions of spacetime.

3. Describes the change in mass distribution in spacetime, from high density
early to lower later (2 x 3= Amomentum).

4. Fits every observational constraint.

v, _|,l ,.".
l l - P

| B

T4 =

Disclosure: I do not know the actual shape of mass density decrease.

Stable Constant Velocity Solutions

1. Start from the gravitational force for a weak field:

k U kU dmUy dmU
RE=m(k e~ 5 D= (50 50
2. Apply the chain rule to the cause terms.

aU. aU . T
Assume m — 2 =m - =0 (meaning assume velocity is constant):
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k U kU am 3 0m
Fh=m (5%~ 50) =520 5

— — ~

3. Break spacetime symmetry: (Up,U) — (Up, U) = (0,c R).
kA om 15
F“:m(O, — 7'_2R) = (0, ?CR)

GM
=)

4. Assume the gravitational spring constant (k=

GMm 5 om 5
F=(0,— SM™ Ry — (0,2 cR)

5. Collect terms on one side:
(9™ + 525 (0,R) =0

272

6. Solve for m:
GM
m=mgec"

7. Substitute: RforcT which depends on exactly the same assumptions used
in the metric derivation (static field, |0 | =|7 |=R, and sigma is imaginary):
GM
m=—mgeR

Summary: Classical Gravitational Force

Math:

GM
m=mgye*k

Pictures:

k= ﬁ‘ i : /-‘ Iﬁ. .
S a )y &7 v
+R 4 3 C—, 'd 'I. q/
| e P ' L +.’
1 2 [>] ..'-\:
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Must Do Physics Done

1. Fy=—Gmvy R Like charges attract.

2. +m One charge.
3. p=V2¢ Newton’s gravitational field equation.
4. m%z — GR#R Newton’s law of gravity under classical conditions.
5. dr?=(1-29M 1 9(9My2) g2 (14290 4T
Consistent with the Schwarzschild metric.
6. Fepm= qE Like charges repel.
7. £q Two distinct charges.
8. p= V-E J=-— % +VxB  Maxwell source equations.
9. 0=V-B 0= % +VxE Maxwell homogeneous equations.
10. Fr=gq %(A””’ — AV:H) Lorentz force.

11. Unified field emission modes can be quantized.
12. Works with the standard model.

13. Indicates origin of mass.

14. LIGO (gravity wave polarization).

15. Rotation profiles of spiral galaxies.

16. Big Bang constant velocity distribution.

Caveats:

5. Check metric derivation. Proposal can be confirm/rejected by experiment.
11. Operators not written explicitly. No calculations done.

12. SU(3) not investigated. Will spinors play nicely in framework?

13. Has the negative energy problem really been solved?

15. Actual, detailed calculations must be compared with data.

16. See 15.
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Appendix: Units
1. Basic units.
2. Units for conversion factors.
3. Units for spacetime.
4. Units for potentials, fields, & charges.
5. Units in action:
a) Lagrange densities.
b) Euler-Lagrange equations (fields).

¢) Momentum.

d) Force.
" o —

3,3.8.5 ~
87994,
2,9,3, 3, LR
12499 . i e

: = & Sl Rl

+ ‘i{ L £ECE . .iin
£ BB
E.B. =
£ 6.8,
2 4 S5a

Basic Units
o 1 Time.
o L Length.

e m Mass.

For EM, Gaussian units will be used. Units of electric charge are found from
Coulomb’s law:

3
"

where " ~» " means "has units of".
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Units for Conversion Factors
For gravity, spacetime, & quantum mechanics.

Gravitational constant.

L3
e Gwim
° cw% Speed of light.
mL? R
- Planck’s constant.

o h~

€#L vA t,Lmt

Units for Spacetime

Where all events of gravity, EM, and quantum mechanics take place.
Volume.

o VI3
RRE 42 Interval squared.
4D-distance squared.

o T2=tf2_— >
R-R—ct2=—c32712~ 12

Stretch factor.

ql\i)
I
|
E
$
|

Relativistic 3-velocity
Velocity vector.

E 7_r') L
— — w_
me’ me t

o f="°
)= (cv,evF) = (

Potential vector.

Units for Potentials, Fields, & Charges
Derivatives of potential vectors (fields!).

The way to describe where stuff is everywhere, everywhen.

vm
VL

° A“;”wgwﬁwgw
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v 2} Charge.

t

o g VG M VA

us . L VGm L VR e
Jr=aU_ (2 85y, v it /7 L1

* Ve~ R v e O s
Current density vector.
8,535, EECE
9,3 %3? £, 8.E
3# 3.9.9, :EﬁB-c B,
.ﬁaﬂ.g‘.{&ﬁs& E-B.B,

Units in Action: Lagrange Density

Lagrange Density, where all mass, energy, and interactions are in a volume.

o Lo % Mass density.

moo. 1 q v+ t2 VmL3 1 L /m
i £“’"7_V[ﬁ]“’“>c_217 Ayl int L L dmy
G m Uk VL3 12 1 L v/m nv t2 /m /m
2V o Aﬂ[thmFTT _A ' Aﬂyy[L2tftf}

Equivalent units.

Units in Action: Euler-Lagrange Equations

Euler-Lagrange equations, generates field equations given a Lagrange density.

oe ae o .
* Cy =cO0urn— 50,9) From principle of least action.
2L -
® 5 5 mYE) V[m L1~ VARY| 22
~ Vgt Loy~ VE (Ll s \YJZ] [+ 22~ JH2) Equivalent units.

Units in Action: Momentum
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Energy and 3-momentum from a derivative of a Lagrange density.

o T=hVG-2 mt—:,LZ Derivative of the Lagrange density.

cot

[L mL2 mL2 VI3 Lt+VI m 1 1
e T 1~ VG aA# e v Equivalent units.

th

Note: units suggest relativistic (c), quantum (h) gravity (G).

Units in Action: Relativistic Force

omUH . .
e [F=cause= 5 Force is a cause which has an effect on momentum.

) FN[T:TL]M.)%qUﬂA“7 t@fﬁ]win[f A#:V Lffo]

Vvt VL ttV/L

VG .
- WV VI3 ¢t L ym
o e mUﬂA [t\/HLm t t\/f}

Equivalent units.
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Summary: Units

Math:
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Pictures:
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