
1

THE COMPLEXITY OF THE QUATERNION PROD-
UCT*

Thomas D. Howell

Jean-Claude Lafon1**

TR 75-245

June 19752

Department of Computer Science, Cornell University, Ithaca, N.Y.

* This research was supported in part by the National Science Foundation Graduate
Fellowship and the Office of Naval Research Grant N00014-67-A-0077-0021.

** Universite Scientifique et Medicale de Grenoble, Tour des Mathematiques, B.P. 53,
38041 Grenoble, France.

Abstract:

Let X and Y be two quaternions over an arbitrary ring. Eight multiplications are neces-
sary and sufficient for computing the product XY . If the ring is assumed to be commu-
tative, at least seven multiplications are still necessary and eight are sufficient.

1. Introduction

Real quaternions are elements of the division ring over the reals generated by the ele-
ments i, j,k satisfying i2 = j2 = k2 =−1, ij =−ji = k, jk =−kj = i and ki =−ik = j.
If xn,yn ∈ R for n = 1,2,3,4, then X = x1 +x2i+x3 j+x4k and Y = y1 +y2i+y3 j+y4k
are quaternions and their product is:

XY = (x1y1− x2y2− x3y3− x4y4)

+(x1y2 + x2y1 + x3y4− x4y3) i

+(x1y3− x2y4 + x3y1 + x4y2) j

+(x1y4 + x2y3− x3y2 + x4y1)k

Real quaternions satisfy N(X) ≡ x2
1 + x2

2 + x2
3 + x2

4 > 0 if X 6= 0 and N(XY) =
N(X)N(Y). They are important because of their usefulness in calculations arising in
physics and mathematics.

1Now at the University of Nice (jcl@mimosa.unice.fr)
2Retyped and converted to TeX from a TIFF G4 600dpi scanned image of the original obtained from

the Cornell Computer Science WWW site (also
now stored at ftp://ftp.netcom.com/pub/hb/hbaker/quaternion/cornellcstr75-
245.tar.gz), November, 1995, by Henry G. Baker (hbaker@netcom.com), and posted
on the Internet (ftp://ftp.netcom.com/pub/hb/hbaker/quaternion/cornellcstr75-
245.dvi.gz and .ps.gz) with the permission of Jean-Claude Lafon.

The Complexity of the Quaternion Product 2

Although real quaternions are most often used, the quaternion product as defined
above can be computed when the xn’s and yn’s are elements of an arbitrary ring. We
are interested in the complexity of this computation. The complexity of an algorithm
is measured by the number of ring multiplications it requires. The obvious algorithm
for computing the quaternion product uses 16 multiplications. The complexity of the
quaternion product is the complexity of the least complex algorithm computing it.

Two cases must be considered when discussing the complexity of quaternion mul-
tiplication over a ring, the general case and the commutative case. The general case
considers only those algorithms which correctly compute the quaternion product over
any ring.

The commutative case allows, in addition to these, algorithms which work only in
commutative rings. Commutative algorithms are important because the real numbers
are commutative. Clearly the complexity of the quaternion product, or any computa-
tion, in the commutative case is not greater than the complexity of the same computa-
tion in the general case.

The problem of determining the complexity of the quaternion product is a special
case of the problem of determining the complexity of a set of bilinear forms. A num-
ber of other special cases appear in the literature. For example, Strassen [1] shows that
seven multiplications are sufficient for the product of 2×2 matrices. Hopcroft and Kerr
[2] and Winograd [3] show that seven multiplications are also necessary in the general
and commutative cases, respectively. Fiduccia [4] mentions that ten multiplications are
sufficient for the quaternion product. It has been shown by de Groote that ten are nec-
essary and sufficient to compute the quaternion products XY and YX simultaneously.
The complexity of arbitrary sets of bilinear forms has been studied by Gastinel [6] and
Musinski [7], but useful results are known only for sets of size one or two.

The purpose of this paper is to show that eight multiplications are necessary and
sufficient for the quaternion product in the general case, and that at least seven multi-
plications are necessary in the commutative case.

2. Model of Computation

The following definitions make precise the notion of an algorithm and its complexity.
Definition. Let F be a field and {x1,x2, ...,xn} be a set of indeterminates. An
algorithm is a finite sequence of steps, α = {α1,α2, ...,αs}, where each step,
αi, is of one of three forms:

(i) gi← x j,1≤ j ≤ n
(ii) gi← a,a ∈ F
(iii) gi← g jθgk, j < i,k < i and θ ∈ {+,−,×}.

Note that each gi is an element of F [x1, ...,xn], the ring of polynomials in x1, ...,xn

with coefficients from F . An algorithm α is said to compute a set E ⊆ F [x1, ...,xn] if
E ⊆ {g1, ...,gs}.

The Complexity of the Quaternion Product 3

Definition. The complexity of an algorithm is equal to the number of steps of
the form gi ← g j× gk where g j 6∈ F and gk 6∈ F. Such steps are called active
multiplications.

The xi’s are the input data to the algorithm. Only multiplications which depend on
the data are counted. Multiplications by scalars (elements of F) are ignored.

The complexity of a computation may depend on the choice of F , the field of
scalars. For example, x2

1 + x2
2 requires two active multiplications when F is the reals.

When F is the complex numbers, x2
1 +x2

2 = (x1 + ix2)(x1− ix2) requires just one active
multiplication. Throughout this paper F is assumed to satisfy the following condition:
For all a,b,c,d,∈ F

a2 +b2 + c2 +d2 = 0 if and only if a = b = c = d = 0. (∗)

The reals and the rationals satisfy (*), but the complex numbers and all finite fields
do not. A counterexample will show that our theorems do not hold when F is the
complexes.

3. Tensor Rank

Let {Mk}
p
k=1 be a set of m×n matrices over F . Let xt = [x1, ...,xm] and yt = [y1, ...,yn]

be the vectors of indeterminates. Let fk be the bilinear form represented by Mk : fk =
xt Mky for k = 1, ..., p. The following theorem is known [8], [9].

Theorem 1. If α is an algorithm of complexity q computing f1, ..., fp in the general
case (commutativity is not assumed) then there is an algorithm α′ of complexity q
computing f1, ..., fp in which all active multiplications are the form (ut

`x) · (v
t
`y) where

u` ∈ Fm, v` ∈ Fn for ` = 1,2, ...,q. Then

f1

f2

.

.

.
fp

= W

(ut
1x) · (vt

1y)
(ut

2x) · (vt
2y)

·
·
·

(ut
qx) · (vt

qy)

where W is a p×q matrix over F.
Let zt = [z1, ...,zp] be another vector of indeterminates.
The trilinear form

T =
p

∑
k=1

fkzk = ∑
i, j,k

mi jk xi y j zk

is represented by M = (mi jk)
m
i=1

n
j=1

p
k=1 ∈ Fm⊗Fn⊗F p. Note that mi jk is the i, j

element of Mk.

The Complexity of the Quaternion Product 4

Definition. The tensor rank of the set {Mk}
p
k=1 (or simply of M) is the smallest

integer q for which

M =
q

∑̀
=1

u`⊗ v`⊗w`

where u` ∈ Fm,v` ∈ Fn,w` ∈ F p for ` = 1, ...,q, and⊗ denotes tensor prod-
uct (outer product).

When p = 1, the tensor rank of the set {M1} is equal to the rank of the matrix M1.
The next theorem shows the importance of tensor rank.

Theorem 2. The tensor rank of the set {Mk}
p
k=1 is equal to the minimum number of

active multiplications required to compute the bilinear forms fk = xt Mky,k = 1, ..., p,
in the general case.

Proof: Assume q active multiplications suffice. By Theorem 1

fk =
q

∑̀
=1

wk`(u
t
`x)(v

t
`y).

Let wt
` = [w1`, ...,wp`]. Then

T = ∑
i, j,k

mi jk xi y j zk =
p

∑
k=1

fkzk =
q

∑̀
=1

(ut
`x)(v

t
`y)(w

t
`z),

which implies

M =
q

∑̀
=1

u`⊗ v`⊗w`.

Hence the tensor rank of M is at most q. The reverse argument shows that if the
tensor rank of M is q then q active multiplications suffice to compute f1, ..., fp.

It will often be more convenient to represent the three-dimensional object M in two
dimensions as M(z) = ∑p

k=1 Mkzk. Then Theorem 2 says that the complexity of the set
of bilinear forms f1, ..., fp is equal to the smallest q such that

M(z) =
q

∑̀
=1

u`⊗ v`(w
t
`z) =

q

∑̀
=1

u`v
t
`(w

t
`z) ([10]).

Thus, q is the minimum number of rank-one matrices (depending on z) into which
M(z) can be decomposed. This will be referred to as the tensor rank of M(z).

Example. Let M1 =

[

1 0
0 −1

]

,M2 =

[

0 1
1 0

]

. Then

The Complexity of the Quaternion Product 5

M(z) =

[

z1 z2

z2 −z1

]

=

[

z2 z2

z2 z2

]

+

[

z1− z2 0
0 0

]

+

[

0 0
0 −z1− z2

]

=

[

1
1

]

[1 1] (z2) +

[

1
0

]

[1 0] (z1− z2) +

[

0
1

]

[0 1] (−z1− z2)

hence the tensor rank of M(z) is at most three.

T = (x1y1− x2y2)z1 +(x1y2 + x2y1)z2

= (x1 + x2)(y1 + y2)z2 + x1y1(z1− z2)+ x2y2(−z1− z2)

This leads to

[

x1y1− x2y2

x1y2 + x2y1

]

=

[

0 1 −1
1 −1 −1

]

(x1 + x2) · (y1 + y2)
x1 · y1

x2 · y2

which is of the form given in Theorem 1.
For the general case, Theorem 2 has characterized the complexity of a set of bilinear

forms in terms of the tensor rank of the coefficients. The same can be done for the
commutative case.

Let M(z) be as above.

Theorem 3. The commutative complexity of the bilinear forms f1, ..., fp is equal to the
minimum possible tensor rank of N(z) where

N(z)+N(z)t =

[

0 M(z)
M(z)t 0

]

.

This follows from a theorem analogous to Theorem 1, which states that in the
commutative case there is a minimal complexity algorithm in which the active multi-
plications have the form (ut

`x + vt
`y)(ũ

t
`x + ṽt

`y) where u`, ũ` ∈ Rm and v`, ṽ` ∈ Rn. See
Lafon [9] for a proof.

Note that the choice

N(z) =

[

0 M(z)
0 0

]

is possible, hence the commutative complexity is not greater than the general com-
plexity of a set of bilinear forms.

4. Upper Bound

In this section an algorithm will be given which computes the quaternion product in
the general case using eight active multiplications.

The Complexity of the Quaternion Product 6

The quaternion product consists of four bilinear forms:

f1 = xt M1y = x1y1− x2y2− x3y3− x4y4

f2 = xt M2y = x1y2 + x2y1 + x3y4− x4y3

f3 = xt M3y = x1y3− x2y4 + x3y1 + x4y2

f4 = xt M4y = x1y4 + x2y3− x3y2 + x4y1

By the results of section 3, the desired algorithm corresponds to a decomposition
of M(z) as a sum of eight rank-one matrices, where

N(z) =
4

∑
k=1

Mkzk =

z1 z2 z3 z4

z2 −z1 z4 −z3

z3 −z4 −z1 z2

z4 z3 −z2 −z1

.

First, write M(z) = M′(z)+M′′(z) where

M′(z) =

−z1 z2 z3 z4

z2 −z1 z4 z3

z3 z4 −z1 z2

z4 z3 z2 −z1

M′′(z) = 2

z1 0 0 0
0 0 0 −z3

0 −z4 0 0
0 0 −z2 0

Obviously, M′′(z) is representable as a sum of four rank-one matrices. So is M ′(z):

4M′(z) =

(−z1 + z2 + z3 + z4)

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

+(−z1 + z2− z3− z4)

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1

+

(−z1−z2+z3−z4)

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

+(−z1−z2−z3+z4)

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

The corresponding algorithm is :

[I] = x1y1 [II] = x4y3 [III] = x2y4 [IV] = x3y2

The Complexity of the Quaternion Product 7

[V] = (x1 + x2 + x3 + x4)(y1 + y2 + y3 + y4)

[VI] = (x1 + x2− x3− x4)(y1 + y2− y3− y4)

[VII] = (x1− x2 + x3− x4)(y1− y2 + y3− y4)

[VIII] = (x1− x2− x3 + x4)(y1− y2− y3 + y4)

f1 = 2[I]−
[V]+ [VI]+ [VII]+ [VIII]

4

f2 =−2[II]+
[V]+ [VI]− [VII]− [VIII]

4

f3 =−2[III]+
[V]− [VI]+ [VII]− [VIII]

4

f4 =−2[IV]+
[V]− [VI]− [VII]+ [VIII]

4
This shows that the complexity of the quaternion product is at most eight in both

the general case and the commutative case.

5. Transformations

An algorithm computing the bilinear forms, S = {xtMky : k = 1, ..., p}, can often be
transformed into a new algorithm computing the same forms by substituting for each
xi a linear combination of the xi’s and for each y j a linear combination of the y j’s and
then taking new linear combinations of the resulting active multiplications.

Definition. Let A,B, and C be nonsingular matrices over F of order m,n and p,
respectively. The ordered triple, (A,B,C), is a transformation on the set S if it
leaves the trilinear form representing S invariant:

∑
i, j,k

mi jk(Ax)i(By) j(Cz)k = ∑
i, j,k

mi jk xi y j zk.

The transformations on a given set of forms form a group under composition.
Given an algorithm computing S and a transformation, (A,B,C), a new algorithm

of the same complexity can be formed by first computing x′ = Ax and y′ = By using
no active multiplications. The original algorithm applied to x′ and y′ computes the
coefficients f ′ = [f ′1, ..., f ′p]

t of z′ = Cz in the expression ∑i, j,k mi jk x′i y′j z′k. The desired
forms, S, which are the coefficients, f = [f1, ..., fp], of z are recovered by computing
f ′tC = f t using no active multiplications.

Example.
Let

A =

1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 0

B =

1 1 0 0
−1 1 0 0
0 0 1 −1
0 0 1 1

C =

1
4

AB

The Complexity of the Quaternion Product 8

The reader can verify by direct computation that (A,B,C) is a transformation on the
quaternion product. When applied to the algorithm of section 4, it yields the following
algorithm:

[I] = (x1 + x2)(y1 + y2) [V] = (x2 + x4)(y2 + y3)
[II] = (x4− x3)(y3− y4) [VI] = (x2− x4)(y2− y3)
[III] = (x2− x1)(y3 + y4) [VII] = (x1 + x3)(y1− y4)
[IV] = (x3 + x4)(y2− y1) [VIII] = (x1− x3)(y1 + y4)

f1 = [II]+
−[V]− [VI]+ [VII]+ [VIII]

2

f2 = [I]−
[V]+ [VI]+ [VII]+ [VIII]

2

f3 =−[III]+
[V]− [VI]+ [VII]− [VIII]

2

f4 =−[IV]+
[V]− [VI]− [VII]+ [VIII]

2

6. Lower Bound : General Case

The purpose of this section is to prove the following theorem.

Theorem 4. Any algorithm which computes the quaternion product over arbitrary rings
using scalars from F requires at least eight active multiplications.

Recall the assumption (*) about F: for all a,b,c,d,∈ F , a2 + b2 + c2 + d2 = 0 if
and only if a = b = c = d = 0. The proof will use this assumption in several places.
Two lemmas contain most of the proof.

Lemma 1. If there is an algorithm which computes the quaternion product using q
active multiplications, then there is also an algorithm of the same complexity in which
one active multiplication is by x1 and another is by y1.

Proof. Let a1,a2,a3,a4 be elements of F, not all zero. Let d(a) = a2
1 +a2

2 +a2
3 +a2

4 6= 0
and

A = 1/d(a)

a1 −a2 −a3 −a4

a2 a1 −a4 a3

a3 a4 a1 −a2

a4 −a3 a2 a1

Let I be the 4×4 identity matrix. A direct computation shows that TA = (A, I,d(a)A)
is a transformation on the quaternion product.

If there is an algorithm computing the quaternion product using q active multipli-
cations, then by Theorem 1 there is also one of the form

The Complexity of the Quaternion Product 9

W

(ut
1x) · (vt

1y)
.
.
.

(ut
qx) · (vt

qy)

=

f1

f2

f3

f4

.
Call this algorithm α. Note that no ui or vi can be the zero vector, otherwise the

corresponding multiplication would not be active.
Let uT

1 = [u11 u21 u31 u41]. Then the transformation TA with [a1 a2 a3 a4]=
[u11 u21 u31 u41] when applied to α produces a new algorithm α′ in which the first
multiplication is ut

1(Ax) · vt
1(Iy) = x1 · vt

1y.
Similarly, TB = (I,B,d(b)B) is a transformation if

B = 1/d(b)

b1 −b2 −b3 −b4

b2 b1 b4 −b3

b3 −b4 b1 b2

b4 b3 −b2 b1

and b1,b2,b3,b4 ∈ F are not all zero. When [b1 b2 b3 b4] = vt
2, TB transforms

α′ into α′′ in which the first two multiplications are x1 ·v′t1 y and u′t2 x ·y1, where v′t1 = vt
1B

and u′t2 = ut
2A.

Lemma 2. Any algorithm which computes the quaternion product of x2i + x3 j + x4k
and y2i+y3 j+y4k in the general case, using scalars from F requires at least six active
multiplications.

Proof. The trilinear form T ′ associated with this computation is:

T ′ = (−x2y2− x3y3− x4y4)z1 +(x3y4− x4y3)z2

+(−x2y4 + x4y2)z3 +(x2y3− x3y2)z4

By Theorem 2, the least number of active multiplications needed to compute this
product is equal to the tensor rank of the matrix

M′(z) =

−z1 z4 −z3

−z4 −z1 z2

z3 −z2 −z1

As the determinant of this matrix is equal to−z1(z2
1 + z2

2 + z2
3 + z2

4), M′(z) is of rank
three if z1 6= 0.

Let q be the tensor rank of M′(z). M′(z) = ∑q
`=1 u`vt

`(w
t
`z), u` ∈ F3,v` ∈ F3,w` ∈

F4. There must exist four linearly independent vectors among the w`,(` = 1, ...,q),
as M′(z) depends on four independent parameters. Assume w1,w2,w3,w4 are linearly
independent. There exists z◦ with z◦1 6= 0 such that:

wt
1z◦ = 0, wt

2z◦ = 0, wt
3z◦ = 0.

The Complexity of the Quaternion Product 10

For this choice of z◦,

M′(z◦) =
q

∑̀
=4

u`v
t
`(w

t
`z
◦)

Since z◦1 6= 0, M′(z◦) is of rank three and therefore 3≤ q−3 which implies q≥ 6.

Proof of Theorem 4. Suppose that there is an algorithm computing the quaternion
product with only 7 active multiplications. By Lemma 1 there is another algorithm
requiring only 7 in which one active multiplication is by x1 and one is by y1. Setting
x1 = y1 = 0 in this algorithm produces a new algorithm computing the product of x2i+
x3 j + x4k and y2i + y3 j + y4k with only 5 active multiplications. By Lemma 4 this is
impossible.

The algorithms given in sections 4 and 5 attain the lower bound given by Theorem
4. Thus, the complexity of the quaternion product in the general case is exactly eight.
Combined with Theorem 2 this fact can be restated in the following way:

Corollary. The tensor rank of

M(z) =

z1 z2 z3 z4

z2 −z1 z4 −z3

z3 −z4 −z1 z2

z4 z3 −z2 −z1

is eight.

7. Lower Bound : Commutative Case

Theorem 5. Any algorithm which computes the quaternion product over commutative
rings using scalars from F requires at least seven active multiplications.

Proof. Let q be the minimum number of active multiplications required. Theorem 3
states that q is the minimum tensor rank of any N(z) satisfying

N(z)+N(z)t =

[

0 M(z)
M(z)t 0

]

. (1)

(M(z) is defined in section 4). Then we can write

N(z) =
q

∑̀
=1

u`v
t
`(w

t
`z),u` ∈ F8,v` ∈ F8,w` ∈ F4 for ` = 1, ...,q. (2)

The matrix N(z) depends on four independent parameters z1, ...,z4 (from (1)). There-
fore we must have four vectors w` linearly independent in the expression (2) for N(z).
Assume w1,w2,w3 and w4 are linearly independent. The components of z can be as-
signed values from F to satisfy the following system of equations:

wt
1z = 0, wt

2z = 0, wt
3 = 0.

The Complexity of the Quaternion Product 11

Let z◦ ∈ F4 be a nontrivial solution of this system (z◦ 6= 0):

z◦t = [z◦1 z◦2 z◦3 z◦4] .

For this choice of z,

N(z◦) =
q

∑̀
=4

u`v
t
`(w

t
`z
◦).

N(z◦) is expressed as a linear combination of q−3 rank-one matrices, therefore

Rank(N(z◦))≤ q−3.

But we have also:

N(z◦)+N(z◦)t =

[

0 M(z◦)
M(z◦)t 0

]

.

A brief calculation shows that

det(M(z◦)) =−((z◦1)
2 +(z◦2)

2 +(z◦3)
2 +(z◦4)

2)2.

From the fact that z◦ is an element of F4 not equal to zero and assumption (*), we
deduce that det(M(z◦)) 6= 0, and therefore

Rank(N(z◦)+N(z◦)t) = 8.

But Rank(N(z◦) + N(z◦)t) ≤ 2Rank(N(z◦)) ≤ 2(q− 3), so 8 ≤ 2(q− 3) implies
q≥ 7.

8. A Counterexample

The proofs of the lower bounds in both the general and commutative cases depend on
the assumption (*) that the equation, a2 +b2 + c2 +d2 = 0, has no nontrivial solutions
in F. For example, (*) does not hold if F is the complex numbers. The following
example will show that Theorem 4 is not true with this choice of F .

With the real quaternion X = x1 + x2i + x3 j + x4k we can associate the following
2×2 complex matrix.

[

X1 X2

−X̄2 X̄1

]

X1 = x1 + x2i, X2 = x3 + x4i

This mapping is an isomorphism between quaternions and the set of matrices of
this type. The product of two quaternions can be viewed as the product of two such

The Complexity of the Quaternion Product 12

complex matrices. From the result of Strassen [1], this product can be performed in
seven complex multiplications (in fact, six complex and one real multiplication).3

The same construction yields an algorithm for multiplying quaternions over an ar-
bitrary ring with seven “complex” multiplications, where a “complex” multiplication
means the construction of (x1y1−x2y2)+(x1y2 +x2y1)i from x1 +x2i and y1 +y2i, and
x1,x2,y1 and y2 are ring elements.

9. Conclusion

For the general case the complexity of the quaternion product is exactly eight. For
the commutative case the complexity is either seven or eight. No algorithm is known
which uses commutativity to advantage in computing the quaternion product. Such an
algorithm or a proof that none exists would eliminate the gap between the upper and
lower bounds in the commutative case.

It has recently come to the authors’ attention that some of the results reported here
have been previously obtained. The upper bound of section 4 appears in Dobkin [11].
The lower bound for the general case has been proven by de Groote [12].

References

[1] Strassen, V., Gaussian elimination is not optimal, Numer. Math., 13 (1969), 354–
356.

[2] Hopcroft, J.E., and L.R. Kerr, On minimizing the number of multiplications neces-
sary for matrix multiplication, SIAM J. Appl. Math., 20 (1971), 30–35.

[3] Winograd, S., On multiplication of 2×2 matrices, Linear Algebra and its Applica-
tions, 4 (1971), 381-388.

[4] Fiduccia, C.M., On obtaining upper bounds on the complexity of matrix multipli-
cation, Complexity of Computer Computations, Plenum Press, New York, 1972, 3–40.

[5] de Groote, H.F., On the complexity of quaternion multiplication, Tägung über al-
gorithmen und komplexitätstheorie, Oberwolfach, (November 1974).

[6] Gastinel, N., On the simultaneous calculation of a set of bilinear forms, Gatlinburg
V Symposium on Numerical Algebra, (June 1972).

[7] Musinski, J., Determining the complexity of matrix multiplication and other bilin-
ear forms, Ph.D. Thesis, Cornell University, (May 1973).

[8] Aho, A.V., J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison Wesley, Reading, Mass., 1974, 446.

3Editor’s note: This isomorphism between real quaternions and the pair X1,X2 of complex numbers in the
first row of the matrix also shows that the real quaternion product requires at most 4 complex multiplications.
The top row of the result is obtained with 4 complex multiplications: X1Y1−X2Ȳ2,X1Y2 +X2Ȳ1. The bottom
row of the result matrix requires no additional multiplications, because it can be obtained from the top row
by trivial operations.

The Complexity of the Quaternion Product 13

[9] Lafon, J.C., Optimum computation of p bilinear forms, (to appear in Journal of
Linear Algebra), (1973).

[10] Strassen, V., Vermeidung von divisionen, Crelle Journal für die Reine und Ange-
wante Mathematik, (1973).

[11] Dobkin, D., On the arithmetic complexity of a class of arithmetic computations,
Ph.D. Thesis, Harvard University, 1973.

[12] de Groote, H.F., On the computational complexity of quaternion multiplication,
preprint, 1975.

