INDUCTIVE INFERENCE THEORY — A
UNIFIED APPROACH TO PROBLEMS IN
PATTERN RECOGNITION AND ARTIFICIAL
INTELLIGENCE

Ray J. Solomonoff

Visiting Professor, Computer Learning Research Center
Royal Holloway, University of London

IDSTA, Galleria 2, CH-6928 Manno—Lugano, Switzerland
rjsolo@ieee.org http://world.std.com/ rjs/pubs.html *

Reprint from: 4th Int. Joint Conf. on Artificial Intelligence, Thilisi, Georgia,
USSR. 3-8 Sept. 1975.

Abstract

Recent results in induction theory are reviewed that demonstrate the
general adequacy of the induction system of Solomonoff and Willis. Sev-
eral problems in pattern recognition and A.I. are investigated through
these methods. The theory is used to obtain the a priori probabilities that
are necessary in the application of stochastic languages to pattern recog-
nition. A simple, quantitative solution is presented for part of Winston’s
problem of learning structural descriptions from examples. In contrast to
work in non-probabilistic prediction, the present methods give probability
values that can be used with decision theory to make critical decisions.

Introduction

The kind of induction theory that we will consider may be regarded as a Bayesian
method in which the a priori probability of a hypothesis is related to the shortest
descriptions of that hypothesis that are obtainable by programming a reference
universal Turing machine.

The probability values obtained are ordinarily not effectively computable.
They can become effectively computable if we make certain reasonable restric-
tions on the source of the data, but in either case they do not appear to be

*This research was sponsored in part by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research contracts N00014-70-A-0362-0003 and
NO00014-70-A-0362-0005; USAF contract, AF-19(628)-5975; AFOSR contract AF-49(638)-376,
Grant AF-AFOSR 62-377, and Public Health Service NIH Grant GM 11021-01.

practically calculable. However, various approximation methods readily suggest
themselves, and indeed, all known methods of obtaining probability estimates
may be regarded as approximations to the idealized method and they can be
compared and criticized on this basis.

Several problems in pattern recognition and A.I. will be discussed with re-
spect to this general formulation of induction.

Induction and pattern recognition through stochastic grammar construction
is discussed in a general way. The best work in this area involves a Bayesian
analysis and the present induction theories tell how to obtain the necessary a
priori probabilities of various grammars.

Next we discuss in some detail part of Winston’s program for learning struc-
tural descriptions from examples. A simple vector model of the problem is
described and various quantitative results are readily obtained. These agree
for the most part, with Winston’s qualitative heuristic discussions of the rela-
tive likelihoods of various models of concepts, but the results are obtained very
directly and do not involve tree search of any kind.

In addition to resolving many otherwise ambiguous decisions, the quanti-
tative probabilities obtained enable us to use decision theory to make critical
decisions as in the mechanization of medical diagnosis.

1 Recent Work in Induction

We will present some recent results in the theory of inductive inference — dis-
cussing what is possible and what is not possible.

For the purposes of this discussion, the problem of inductive inference will
be the extrapolation of a sequence of symbols emitted by an unknown stochastic
source. It is not difficult to show that almost all, if not all problems usually
regarded as induction, can be expressed in this form. Discovery of multidimen-
sional patterns, curve fitting, time series extrapolation and weather prediction
are but a few of the kinds of problems that can be readily dealt with.

Although induction has always been the most important thing going on
in science and has constituted a large part of the study of the philosophy of
science, there has not, until recently, been a rigorous formulation of the process
with a clear understanding of the expected errors involved. We will discuss
these recent results and what they imply about what is possible, impossible and
approximatable.

Recent work in induction has centered about the concept of the “description”
of a string of symbols. A “description” of a string with respect to a particular
reference computer is an input to that computer that gives the described string
as output. Solomonoff [8] used the lengths of short descriptions of a string and
its possible continuations to define the a priori probability of that string. Bayes’
Theorem was then used to find the probability of any particular continuation
of the string. He also showed that using a universal Turing machine for refer-
ence made the a priori probabilities relatively insensitive to choice of reference
computer.

Very approximately,

P = i 2~ i
=1

Here, P is the probability of the described string and NN; is the length of
the it possible description. We sum over all possible descriptions of the string
and all possible continuations of it. Clearly the shortest descriptions get most
weight, but the other descriptions can’t be ignored.

Later, Kolmogorov [1] and Chaitin [13] proposed that a random sequence be
defined to be one whose shortest description with respect to a universal Turing
machine is about the same length as the sequence itself. Martin Lof [2], Loveland
[3] Schnorr [4] continued work on randomness definitions. For a review of this
work as well as subsequent research in the Soviet Union, see Zvonkin and Levin.
[5].

More recently, Chaitin [6] has proposed expressions for entropies of sequences
based on descriptions that form a prefix set. The expressions, however, have
error terms that do not occur in the earlier, more exact formulation of Willis
[9].

Willis refined Solomonoff’s model and overcame several difficulties in it. The
theorems in the present paper usually follow directly from his work. Because of
the “halting problem”, it is often impossible to tell if one string is a description
of another with respect to a specific machine. Willis dealt with this problem
by considering an infinite sequence of machines, each more powerful than the
last, but all of them sufficiently limited so that they have no “halting problem.”
Associated with each of these machines is a computable probability assigned to
the string in question.

One sequence of such machines is obtainable by considering a universal 3
tape Turing machine with unidirectional input and output tapes and a bidirec-
tional working tape. The T*" machine in the sequence is obtained by stopping
the universal machine after T' steps (if it has not already stopped). It is not
difficult to show that the sequence of probabilities obtained by these machines
approaches a limit as T approaches infinity, but that the limit is not effectively
computable.

Suppose that A(™ is a string of length m, and that we have a stochastic
generator that assigns a probability P(A(m)) to A™). Suppose this generator
is describable by a finite string b bits in length. Then for sufficiently powerful
reference machines,

pMr (A(m)) > bep(A(m))

Here PM7 is the probability assigned to A(™ by the reference machine, My.
From this, it is clear that the limit machine must satisfy this inequality, so if
we define

PM(AM)) = Jim PMz(40m))

Then,
M(Am) > 27t pAm)

Note that the factor 27° is independent of m, the length of the sequence.
The error between PM and P is

PM(A(m)) 2—b
PA)

One interpretation of the result is given by the work of Cover [7], who shows
that if one places bets at even odds on a stochastic sequence generated by P,
but bases one’s bets on P, then the ratio of one’s fortune to the optimum
obtainable (which would use P as basis) will be just PM /P.

Cover also proposed a somewhat different expression for PM from Willis’,
basing it upon Chaitin’s [6] definition of prefix code complexity. He then showed
that for his probability definition, PM '

lim —In(PM (A()/P(AT) = 0
m—0o0 M
which is a somewhat weaker result than Willis’. We have been able to show,
however, that for a very broad class of stochastic sources, Cover’s probability
estimate is negligibly worse than Willis’.
To obtain a different measure of the accuracy of Willis’ method, let A
represent the string consisting of the first n symbols of A Then

5 = p(A(n+1))
" P(AM)
and
_ PM(AlTY)
n= PM(A)

are the conditional probabilities of the n + 1** symbol, given the previous
symbols, and

P(A©) = pPM (A =1
From these definitions we obtain directly,

PM (A(m) ﬁ n, 3
o on

This expression is the ratio of the products of the conditional probabilities
for the n*" symbols.

If we want to know the mean error in this ratio we take the m!" root and
obtain 2= . It is clear that it must approach unity as m becomes very large.

Although this is a very powerful result and gives real assurance that 4/,
converges to d,, very rapidly as m increases, it lacks a certain intuitive appeal.
One asks whether it could not be possible that the ratio might be <« 1 for
some factors and > 1 for others. While the mean could be close to unity the
individual deviations could be quite large.

This difficulty does not arise, however, and from the foregoing result it is
possible to show that the expected value of the total squared error between the
Conditional probabilities d,, and §/, remains < blny/2

m 2m

E(Y (6 —6:)%) =Y _(P(*AM™ i) < blnv/2
=1

i=1 k=1

Here E is the expected value with respect to P. *A(™) is the k" sequence
of length m. There are just 2™ of them. ¥/ and kd; are the conditional proba-
bilities for the it" bit of ¥A™) for PM and P, respectively.

The expected value of the mean square error between the conditional prob-
abilities is less than %ln\/i

A few objections suggest themselves. First, this error is unreasonably smaller
than those obtained in ordinary statistical analysis. For a simple Bernoulli
sequence, the expected squared error in the m!” symbol is proportional to %
and the total squared error is of the order of In m rather than bln/2.

The reason for this discrepancy is that we have assumed that the stochastic
source had a finite description. If the source consisted of zeros and ones with
probabilities 3/8 and 5/8 respectively, we could, indeed have a finite description
— perhaps of the order of 4 or 5 bits. Ordinarily in statistics, however, the
stochastic sources are describable as continuous functions of a finite number of
parameters. The parameters themselves each have infinitely long descriptions.

For situations of this sort, the expected total squared error is not bounded,
but is roughly proportional to the log of the sequence length as in conventional
statistical analysis. The error itself, however, approaches zero.

If there are k different parameters in the model, the expected total squared
error will be bounded by

binv2 + Aklnm

Here, m is the number of symbols in the string being described, A is a
constant that is characteristic of the accuracy of the model and b is the number
of bits in the description of the expression containing the k parameters.

If we are comparing several different models and we have much data (i.e.
large m), then the “b” terms will be of little significance and we need only
compare the corresponding Ak values to determine the best model.

A technique very similar to this has been successfully used by Akaike [10]
to determine the optimum number of parameters to use in linear regression
analysis. The present methods are, however, usually of most interest when the
amount of directly relevant data is relatively small.

Another objection is that P™ is incomputable. This makes it impossible
to calculate it exactly. Is there not a better solution possible? We can obtain
progressively more computable solutions by making more and more restrictions
on the stochastic source.

If there are no restrictions at all, there is no prediction at all possible. If
we restrict the stochastic source only to be finitely describable then it is well
known that there can be no effectively computable solutions, though as we have
seen, there is a non effectively computable solution.

If we restrict the “computational complexity” of the stochastic source, so
that we have an upper bound on how long it takes the source to compute the
probability of a sequence of length m, then the probabilities are, indeed com-
putable, and they converge as rapidly as they do in incomputable cases. They
are, however, no more practically computable than the incomputable solutions.

In any case, we must use approximation methods. It is clear that the incom-
putable method described converges very rapidly — it is likely that it has less
error for a given amount of data than any other probability evaluation method,
and so we will do well to try to approximate it.

In most cases, our approximations consist of finding not the shortest descrip-
tion of the string of interest (this, too, being incomputable), but rather the set
of the shortest descriptions that we can find with the resources available to us.
All of the methods ordinarily used to estimate probability by finding regularities
in data can be expressed in the form of discoveries of short descriptions of the
data and therefore are approximations to the ideal method. In this common
format, various approximations can be compared, so we can select the best ones
— the ones most likely to give good predictions.

2 Application to Pattern Recognition
Stochastic Language

To illustrate the problem, suppose we are given a set of strings of symbols, such
as aa, abba, aabbaa, baaabbaaab etc., and we are told that these strings were
acceptable sentences in some simple formal language. We are required to find a
grammar that could generate these strings.

In general, there will be an infinite number of grammars that can generate the
set even if we restrict the grammars, say, to be finite state or to be context free
grammars. Early investigators proposed that some criterion of “simplicity” be
imposed on the grammar, and various explications of this concept were devised,
but with no basis for preferring one explication over any other.

By assuming the set of strings was produced by some unknown stochastic
generator, and using some of the previously described methods to give an a priori
probability distribution over all such generators, a very general solution to this
problem is obtained, and the concept of “simplicity” is unnecessary. A stochastic
language is an assignment of probabilities to all strings being considered. A
stochastic generator or grammar is a means for carrying out this assignment.

One very general form of stochastic grammar consists of a Turing machine.
One inserts the string into the machine and it prints out the probability of that
string. Many of the strings may have zero probability assigned to them.

Another very general form of stochastic grammar is a generative grammar.
Again we have a Turing machine, but we insert a random string of zeros and
ones. The output strings of this machine then have the probability distribution
associated with the desired stochastic language.

To use stochastic languages to solve induction problems, such as the one of
guessing the grammar that produced a given set of strings, we first assume an
a priori distribution on all possible stochastic languages. If P; is the a priori
probability of the i* stochastic language, and L;; is the probability that the
ith language will produce the j sample string (there being m sample strings),
then the most likely grammar is the one for which

m

P, H Lij
j=1

is maximum.

Often we are not interested in knowing which grammar produced the set of
strings, we only want to know the probability that a particular new string is in
the set — this new string being the m + 1?". A Bayesian analysis gives us

m—+1

> b 11 Li;
=1

> Pi T Lij
Jj=1

for this probability, the summation being taken over all grammars for which
P; > 0.

The a priori probability of a language corresponds roughly to the earlier
concept of simplicity, but it is a more clearly defined quantity.

To generate a stochastic grammar from a non- stochastic generative grammar
is usually very easy. In the generative grammar, at each point in the construction
of the final object, there will be choices to be made. If we assign probabilities to
each of these choices, we have a stochastic generative grammar. The probability
of any particular derivation will be the product of the probabilities of the choices
involved in that derivation. If the language is ambiguous, some objects will be
derivable in more than one way, and the probabilities of each of these derivations
must be added to obtain the total probability of the final object.

Many different kinds of grammars have been devised for various problem
areas [11]. In particular, they have been used for two dimensional scene anal-
ysis, recognition of handwritten characters, chromosome pattern recognition,
recognition of spoken words, etc.

The basic model that stochastic grammars propose is a very attractive one.
It assumes that the sample set was created by some sort of mechanism and that
the mechanism had various probabilistic elements. It enables us to put into the

model any information that we have about the problem, either deterministic or
probabilistic. For some time, however, the assignment of a priori probabilities
to the different possible mechanisms was a problem of uncertain solution.

Induction theory made an important breakthrough by providing a general
method to assign probabilities to these mechanisms, whether the assignment is
to be purely a priori or whether they are dependent in any way on available
information.

If the probability is purely a priori, one method of probability assignment
proceeds by writing out a minimal description of the non-stochastic grammar
from which the stochastic grammar is derived. The details of how this is done
for a kind of finite state grammar and for a general context free grammar are
given in Ref. 8, pp. 232-253.

If there is some data available on the relative frequencies with which the
primitive concepts have been used in the past for other induction problems, this
information can be used to assign initial “bit costs” to these concepts when
constructing new grammars.

3 Application to A.IL
Learning Structural Descriptions from Exam-
ples

Winston’s program for learning various structural concepts from both positive
and carefully chosen negative examples of those concepts [12] is perhaps the
most competent induction program yet completed.

The program does much more than learn concepts, but we shall discuss only
this particular part of the program. It begins with a line drawing of three
dimensional objects. This consists of one or more objects in various positions,
having various relations with respect to one another. There is a preprocessing
program that translates this drawing into a description that is in the form of a
net.

The nodes of the net are objects in the drawing, properties of objects and
classes of objects. There are arrows connecting the nodes that denote relations
between them.

For an example, suppose the original drawing pictured a cube on the left
and a vertical brick on the right. A possible net describing this scene would
have four nodes: a brick; a cube; the property, “standing” and the class of
solids, “prism”. The brick and cube are connected by an arrow labeled “to the
right of”. The brick has an arrow labeled “has the property of” connecting
it to “standing”. Both the brick and cube have arrows going to prism labeled
“a-kind-of”, indicating class inclusion.

After being shown several scenes that are given as positive, and several as
negative examples of a certain concept, such as a table, the program tries to
induce the concept by making a model of it. These models consist of networks
similar to those used to describe scenes, but the nodes and arrows of the net are

usually classes of objects, classes of properties and classes of relations. These
classes may sometimes be expressed as negations, e.g. “not a brick”, or “is not
to the left of”.

For purposes of comparing scenes to one another and scenes to models,
we will consider a scene description to be an ordered sequence of objects and
relations — a vector whose components are a mixture of objects and relations.
A “Model” is a vector whose components are classes.! Formalized in this way, it
is clear that given a set of positive and negative examples, there will ordinarily
be an enormous number of models such that

1. In each of the positive examples, all of the components are members of
the corresponding classes in the model.

2. In each of the negative examples, at least one component is not a member
of the corresponding class in the model.

Winston has devised a system for ordering the models, so that after each exam-
ple is given, it picks the “best” model that is consistent with the data thus far
— i.e. highest in the ordering. His ordering of models is very close to that of a
priori probabilities as calculated by induction theory.

In one case we are given as a positive example, a brick that is standing on
one end. The negative example is a brick lying on one side. The classes that
are considered for the “property” component of the vector of the model are:

1. Standing
2. Not lying

Winston notes that since most concepts are defined in terms of properties rather
than anti-properties, “standing” is more likely. In the language of induction
theory, positive concepts that have names in the language are usually of high
a priori probability. A negative concept consists of a positive concept with a
negation symbol — which increases description length and decreases a priori
probability. If a negative concept is of much utility in description, and of high
a priori probability, it will have been useful to define a special word for it, e.g.
“dirty” is the word for “not clean.” Reference 8, pp. 232-240 treats the problem
of when it is worth while to define new symbols.

Another reason why “standing” is a better choice than “not lying” is that
“standing” probably has fewer members. This is brought out more clearly in
the next example. Here we have two positive cases: 1) Apple 2) Orange. Three
classes for the model are considered. First, the Boolean sum class of apples
and oranges. Second, the class “fruit”. Third, the universal class. Though this
is not the example Winston gives, the choice he would make would be “fruit”.
He regards this as a sort of middle-of-the-road stand in a difficult induction
problem.

IThis differs slightly from Winston’s definition of “model”, but should cause no great
difficulty.

Induction theory gives a quantitative discussion. To make this particular
problem non-trivial, we assume that the positive examples given are in some
sense “typical”. If they are not constrained in this way, then the Universal class
is the best response. Let P; and N; be the respective a priori probability of a
class and the number of members in that class. Then if the positive examples
are “typical” or, more narrowly, if all positive cases of the concept have equal
likelihood of being given as examples, then by Bayes, the most likely class is the
one for which P;/N* is maximum, n being the number of positive cases — two
in the present situation.

The universal class is of high a priori probability, but it has very many mem-
bers. The Boolean sum class has only two members, but its a priori likelihood
tends to be low. This is because the symbol for Boolean sum is “expensive” —
i.e. concepts formed using it, tend to be rather ad-hoc and not very useful in
prediction. If the class “fruit” is, indeed, of fair a priori probability and there
aren’t too many kinds of fruit, it may well be the best choice. We might also con-
sider “edible fruit” or “plants” depending on the sizes and a priori probabilities
of these classes.

From these and similar heuristic arguments, Winston is able to order the
possible models with respect to likelihood. The result is a remarkably capable
program in the problem area he has selected. However, even in this limited
area it is easy to get into complexities that are well beyond the capacity of the
program. Winston deals with these by arbitrarily cutting off the consideration
of certain possibility branches.

With expansion of the language to deal with a larger universe of problems —
e.g. the inclusion of facilities for making recursive definitions — the necessary
complexity would rapidly get beyond the capabilities of the heuristic discussions
of likelihood that Winston uses.

We will describe a system of learning concepts that is similar to Winston’s,
but obtains quantitative probabilities and appears to be far simpler to imple-
ment. It is hoped that this simplification will make it possible to extend Win-
ston’s methods to much richer worlds of problems.

The system consists of a procedure for obtaining an initial model and for
modifying the model as each new positive or negative example is given. At each
point in time several of the best models are stored and these can be used to give
the probability of any particular object being an example of the concept being
learned.

We start out with a positive example of the concept.

Our first model has for its components, those classes of which the corre-
sponding components of the example are members, and for which P;/N; is max-
imum, ¢ being the component considered. Often these classes will have but one
component and Winston uses classes of this kind for his initial model.

Subsequently, there are four possible example situations with respect to the
model. A positive example can be either accepted or rejected by the model or a
negative example can be accepted or rejected by the model. We will treat these
one by one.

If a negative example is rejected by the model, we leave the model invariant.

10

Our criterion of choice of class is maximum P;/N}*. Since n is the number
of positive examples thus far, the new negative example does not modify this
quantity in any way for any class, so a class that was optimal before the example
must be optimal after the example. No change need be made in the model.

On the other hand, if a positive example is given and this is accepted by the
model, the model may or may not need to be changed. Each of the components
must be examined individually. The class with maximum P;/N]* may or may
not be the class with maximum P;/N]***. The modification of the model is
relatively simple because the components are optimized independently of one
another.

A similar situation arises if we are given a positive example that is rejected
by the model. Each of the component classes in the model that rejects the
corresponding example component must be expanded to include the example
component. There will usually be many ways to expand and in each case we
chose the class for which P; /Ni""'1 is maximum, n + 1 being the number of
positive examples thus far.

Consider next a negative case that is accepted by the model. Each compo-
nent class in the model can be contracted in various ways so that it will not
include the corresponding component of the negative example. For each com-
ponent, ¢ there will be a satisfactory rejecting class with a maximum P;/N]*.

Let o; be P;/N* for the i*" component of the model before the negative case
occurred. Let o be P!/N[for the best acceptable class that can reject the i‘"
component of the new negative case. Note that o < «; for all i. Then we will
modify the single component class for which o/, is maximum.

The reason is that the likelihood of the model before the negative case was
[i We want to replace only one of the a; with its corresponding o and to do

tzhis we will choose ¢ such that the new product is maximum — i.e. decreased
least. Modifying more than one component would have to give a smaller product.

The treatment of these four cases appears to be simpler and more precise
than Winston’s heuristic discussions on the relative likelihoods of several possi-
ble models. No tree exploration is necessary.

The P; values are readily approximated by counting the relative frequencies
of various classes. If the samples are small, the accuracy can be improved by
considering how the classes were constructed.

The N; are obtainable by counting the number of different members of each
class that have occurred up to now.

There are two other methods of class construction that can sometimes be
more appropriate.

One possibility is to assume that the positive examples are not necessarily
typical. The problem is then merely to find the model of highest a priori prob-
ability that accepts all known positive and rejects all known negative examples.
Instead of P;/N]* , the quantity that we want to maximize is P;. This is mathe-
matically equivalent to having all of the N; constant — the same for all classes.
The discussions of what to do when a positive case fits the model or when a
negative case doesn’t are similar to those used before, but if a positive case fits

11

the model, the model is always left invariant.

The other alternative is to use the more general model of induction given by
stochastic languages. Here, the classes usually do not have sharp edges. The
description of a stochastic language (which we will identify with a component
class in our model) at once gives the a priori probability of that class as well as
the probability of any particular element being chosen. The latter corresponds
to the 1/N; that was used earlier.

If P; is as before and a;; is the probability that the it" class assigns to the
4t positive example, then we want a class that assigns zero probability to all

n
negative examples such that P; [] aq; is maximum. This criterion corresponds
j=1
to the earlier approximation P;/N/

The three methods of class definition described above are not mutually ex-
clusive. It is possible to describe some vector components by means of the
P;/N!* model, others by means of the P; model and still others by means of the
stochastic language model.

In the foregoing analysis, we have assumed that the vector components are
statistically independent, and the conclusions obtained follow rigorously from
this. If there is reason to believe that several components are statistically depen-
dent, a suitable joint a priori probability distribution for them can be obtained.
This dependent set would be treated as a single vector component, but the rest
of the analysis would be the same.

If we have training sequences with only positive examples, neither Winston’s
system nor the P, system can operate, but both the P;/N]* system and the
stochastic language system have no particular difficulty.

Another important advantage of the analysis techniques described is the use
of quantitative probabilities for the vector classes of the model. From them it is
possible to calculate readily the probability that any unidentified new example
is or is not an example of the concept being learned.

To compute this, take the total probabilities of all models of the concept that
are consistent with the data thus far (i.e. they accept all positive and reject
all negative examples) that accept the new example. Divide this by the total
probabilities of all models of the concept that are consistent with the data thus
far, whether or not they accept the new example.

Quantitative probability estimates are necessary to make critical decisions
through decision theory. The mechanization of medical diagnosis is one impor-
tant area. Decisions in economics, ecology and agriculture are but a few other
areas where probabilities of this kind are of paramount importance.

References
[1] Kolmogorov, A.N. “Logical Basis for Information Theory and Probability

Theory”, IEEE Transactions on Information Theory IT-14, pp. 662-604,
1968.

12

[13]

“Three Approaches to the Quantitative Definition of Information”, Infor-
mation Transmission, Vol I, pp. 3—11, 1965.

Martin Lof, P. “The Definition of Random Sequences”, Information and
Control, Vol. 9, no. 6, Dec. 1966, pp. 602-619.

Loveland, D.W. “A Variant of the Kolmogorov Concept of Complexity”,
Information and Control 15 (1969), pp. 510-526.

Schnorr, C.P. “Process Complexity and Effective Random Tests”, Journal
of Computer System Sciences 7 (1973), pp. 376-388.

Zvonkin, A K., and Levin, L.A. “The Complexity of Finite Objects and the
Development of the Concepts of Information and Randomness by Means
of the Theory of Algorithms”, Russian Mathematical Surveys 25, 6 (Nov.—
Dec. 1970), pp. 83-124.

Chaitin, G.J. “A Theory of Program Size Formally Identical to Information
Theory”, To appear in Journal of the Association of Computing Machinery.

Cover, T.M. “Universal Gambling Schemes and the Complexity Measures
of Kolmogorov and Chaitin”, Report No. 12, Statistics Dept., Stanford
Univ., Stanford, Calif., 1974. Submitted to Annals of Statistics.

Solomonoff, R.J. “A Formal Theory of Inductive Inference.” Information
and Control, March 1964, pp. 1-22 June 1964, pp. 224-254.

Willis., D.G. “Computational Complexity and Probability Constructions”,
Journal of the Assoc. of Computing Machinery, April 1970, pp. 241-259.

Akaike. H. “Information Theory and an Extension of the Maximum Likeli-
hood Principle”, Proc. Second Int. Symp. on Information Theory, Supple-
ment to Problems of Control and Information Theory (1972) pp. 267-281.

Fu, K.S. “Syntactic Methods in Pattern Recognition”, Acedemic Press,
1974.

Winston, P.H. “Learning Structural Descriptions from Examples”, Report
AL-TR231, Artificial Intelligence Lab., Mass. Inst. Technol., 1972. Also can
be found in “The Psychology of Computer Vision”, edited by P.H. Winston;
McGraw Hill, 1974.

Chaitin, G.J. “On the Length of Programs for Computing Finite Binary
Sequences”, Journal of the Assoc. of Computing Machinery, Vol. 13. No. 4
(Oct 1966), pp. 547-569.

13

