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Complexity-Based induction Systems: 
Comparisons and Convergence 

Theorems 
R. J. SOLOMONOFF,  MEMBER, IEEE 

Abstract-III 1964 the author proposed as an explication of a prior’ 
probability the probability meawe induced on output strings by a univer- 
sal Turing machine with unidirectional output tape and a randomly coded 
unidirectional input tape. L&n bas &own tbat if F,&(x) is an mmormal- 
ized form of this measure, and P(x) is any computable probability measure 
on stings, x, then 

i&(x> > CP(x) 

where C is a constant independent of X. l%e corresponm result for the 
normalized form of this measuq P& is directly derivable from WilW 
probability measmes on nonuniversal machines. If the conditional proba- 
billties of Ph are used to approxhnate those of P, then tbe expected value 
of the total squared error in these conditional probabilities is bounded by 
-(l/2) la C. Witb this error criterion, and when used as the basii of a 
universal gambling scheme, Ph is superior to Cover’s measure b*. When 
II*= -log, Ph fs used to define the entropy of a fiite sequence, the 
equation H*(x,y)= H*(x)+ H,*(y) holds exactly, in contrast to Chaitfn’s 
entropy definition, which has a nonvanish@ error term ln this equation. 

I. INTR~DUC~~N 

I N 1964 [ 11, we proposed several models for probability 
based on program size complexity. One of these, P& 

used a universal Turing machine with unidirectional input 
and output tapes with the input tape having a random 
sequence. While the relative insensitivity of the models to 
the choice of universal machine was shown, with argu- 
ments and examples to make them reasonable explicata of 
“probability,” few rigorous results were given. Further- 
more, the “halting problem” cast some doubt on the 
existence of the lim its defining the models. 

However, Levin [S, Th. 3.3, p. 1031 proved that the 
probability assigned by Ph to any finite string, x(n), 
differs by only a finite constant factor from the probabil- 
ity assigned to x(n) by any computable probability 
measure, the constant factor being independent of x(n). 

Manuscript received August 27, 1976; revised November 22, 1977. 
This work was supported in part by the United States Air Force Gffice 
of Scientific Research under Contracts AF-19(628)5975, AF49(638)-376, 
and Grant AS-AFOSR 62-377; in part by the Advanced Research 
Projects Agency of the Department of Defense under Office of Naval 
Research Contracts N00014-70-A-0362-0003 and N00014- 
70-A-0362-0005; and in part by the Public Health Service under NIH 
Grant GM 11021-01. This paper was presented at the IEEE Interna- 
tional Symposium on Information Theory, Cornell University, Ithaca, 
NY, October 10-14, 1977. 

The author is with the Rockford Research, Inc., Cambridge, MA 
02138. 

Since the measure PA is not effectively computable, for 
practical induction it is necessary to use computable ap- 
proximations, such as those investigated by Willis [2]. 
Sections II and III show the relationship of Willis’ work 
on computable probability measures and the machines 
associated with them to the incomputable measure Ph 
and its associated universal machine. 

Section IV shows that if the conditional probabilities of 
P& are used to approximate those of any computable 
probability measure, then the expected value of the total 
squared error for these conditional probabilities is 
bounded by a constant. This superficially surprising result 
is shown to be consistent with conventional statistical 
results. 

Section V deals with Chaitin’s [3] probability measure 
and entropy definitions. These are based on Turing 
machines that accept only prefix sets as inputs, and are of 
two types: conditional and unconditional. His uncondi- 
tional probability is not directly comparable to P& since 
it is defined for a different kind of normalization. Leung- 
Yan-Cheong and Cover [4] used a variant of his condi- 
tional probability that appears to be very close to P&, but 
there is some uncertainty about the effect of normaliza- 
tion. 

Section VI discusses Cover’s [5] b*, a probability 
measure based on Chaitin’s unconditional entropy. Ph is 
shown to be somewhat better than b* with respect to 
mean-square error. Also, if used as the basis of a gambling 
system, it gives larger betting yields than b*. 

In Section VII H*= -log, P& is considered as a defini- 
tion of the entropy of finite sequences. H* is found to 
satisfy the equation 

H*(w) = H*(x) + H,*(Y) 

exactly, whereas Chaitin’s entropy definition requires a 
nonvanishing error term. 

For ergodic ensembles based on computable probability 
measures, E(H*(X(n)))/ it is shown to approach H, the 
entropy of the ensemble. The rate of approach is about 
the same as that of E(HC(X(n)/n))/n and perhaps faster 
than that of E(H’(x(n)))/n where H’(X(n)/n) and 
H ’ (X (n)) are Chaitin’s conditional and unconditional en- 
tropies, respectively. 
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II. P,& AND WILLIS’ PROBABILITY MEASURES 

The various models proposed as explications of proba- 
bility [I] were initially thought to be equivalent. Later [6] 
is was shown that these models form two equivalence 
classes: those based on a general universal Turing 
machine and those based on a universal Turing machine 
with unidirectional input and output tapes and a bidirec- 
tional work tape. We will call this second type of machine 
a “universal UIO machine.” 

One model of this class [ 1, Section 3.2, pp. 14- 181 uses 
infinite random strings as inputs for the universal UIO 
machine. This induces a probability distribution on the 
output strings that can be used to obtain conditional 
probabilities through Bayes’ theorem. 

Suppose M is a (not necessarily universal) UIO 
machine with working symbols 0 and 1. If it reads a blank 
square on the input tape (e.g., at the end of a finite 
program), it always stops. We use x(n) to denote a possi- 
ble output sequence containing just IZ symbols, and s to 
denote a possible input sequence. 

We say “s is a code of x(n) (with respect to M),’ if the 
first n symbols of M(s) are identical to those of x(n). 
Since the output tape of M is unidirectional, the first 12 
bits of M(s) can be defined even though subsequent bits 
are not; e.g., the machine might print n bits and then go 
into an infinite nonprinting loop. 

We say “s is a minimal code of x(n)” if 1) s is a code of 
x(n), and 2) when the last symbol of s is removed, the 
resultant string is no longer a code of x(n). All codes for 
x(n) are of the form +z, where si is one of the minimal 
codes of x(n), and a may be a null, finite, or infinite 
string. It is easy to show that for each n the minimal codes 
for all strings of length n form a prefix set. 

Let N(M,x(n),i) be the number of bits in the ith 
minimal code of x(n), with respect to machine M. We set 
N(M,x(n),i)= co if there is no code for x(n) on machine 
M. 

Let xi(n) be the jth of the 2” strings of length IZ. 
N(M, 9(n), i) is the number of bits in the ith minimal code 
of the jth string of length n. For a universal machine M 
we defined P,& in [I] by 

ph(x(n)) A 5 2--NW+(nhi)/ 5 2 2-N(M,x,(n),i). 
i=l j=, i=l 

(1) 

This equation can be obtained from [l, (7), p. 151 by 
letting the T of that equation be the null sequence, and 
letting a be the sequence x(n). The denominator is a 
normalization factor. 

Although Ph appeared to have many important char- 
acteristics of an a priori probability, there were serious 
difficulties with this definition. Because of the “halting 
problem,” both the numerator and denominator of (1) 
were not effectively computable, and the sums had not 
been proved to converge. 

Another less serious difficulty concerned the normaliza- 
tion. While PA satisfies 

jil P.i4(+(4) = 13 (2) 

it does not appear to satisfy the additivity condition 
Pgx(n))= P&(x(n)O)+ Ph(x(n)l). (3) 

The work of Willis (2), however, suggested a rigorous 
interpretation of (1) that made it possible to demonstrate 
the convergence of these sums and other important prop- 
erties. With suitable normalization, the resultant measure 
could be made to satisfy both (2) and (3). 

Willis avoids the computability difficulties by defining a 
set of measures based on specially limited machines that 
have no “halting problem.” He calls these machines 
FOR’s (Frames of Reference). One important example of 
a FOR is the machine MT, which is the same as the 
universal UIO machine M except that MT always stops at 
time T if it has not stopped already. For very large T, MT 
behaves much like a universal UIO machine. Willis’ 
measure is defined by the equation 

PR(~(,.,))= 2 2-N(R,x(n),i)+ 

The sum over i is finite, since for finite n a FOR has 
only a finite number of minimal codes. This measure 
differs from that of (1) in being based on a nonuniversal 
machine, and in being unnormahzed in the sense of (2) 
and (3). Usually 

2 P”(Xj(rz))< 1. 
j=l 

Let us define &, to be the numerator of (1). It can be 
obtained from Willis’ measure by using Mr. and letting T 
approach infinity: 

Theorem I: The limit in (5) exists. 

Proof The minimal codes for sequences of length n 
form a prefix set, so by Kraft’s inequality, 

Furthermore, this quantity is an increasing function of T, 
since as T increases, more and more codes for x(n) can be 
found. Since any monotonically increasing function that is 
bounded above must approach a limit, the theorem is 
proved. 

For certain applications and comparisons between 
probability measures, it is necessary that they be normal- 
ized in the sense of (2) and (3). To normalize Ph, define 
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Here C(x(n)) is the normalization constant, and n is any 
positive integer. 

We will now show that Ph satisfies (2) and (3) for n > 1. 
It is readily verified from (6) that P& satisfies (3) for 

n > 1. To show (2) is true for n > 1, first define 
Fh(x(O)) A 1, x(0) being the sequence of zero length.Then 
from (6) 

so P,&(O) + P,&( l)= Ph(x(0)) = 1, and thus (2) is true for 
n = 1. (3) implies that if (2) is true for n, then it must be 
true for n + 1. Since (2) is true for n = 1, it must be true for 
all n. Q.E.D. 

III. THE PROBABILITY RATIO INEQUALITY FOR P,& 

In this section we will develop and discuss an important 
property of P,&. First we define several kinds of probabil- 
ity measures. 

The term computable probability measure (cpm) will be 
used in Willis’ sense [2, pp. 249-2511. Loosely speaking, it 
is a measure on strings, satisfying (2) and (3), which can 
be computed to within an arbitrary nonvanishing error e 
in finite time. 

Paraphrasing Willis, we say a probability measure P on 
finite strings is computable if it satisfies (2) and (3) and 
there exists a UIO machine with the following properties: 
a) it has two input symbols (0 and 1) and a special input 
punctuation symbol, b (blank); b) when the input to the 
machine is x(n)b, its output is the successive bits of a 
binary expansion of P(x(n)). If P(x(n))=O, the machine 
prints 0 and halts in a finite time. 

If the machine can be constructed so that it always 
halts after printing only a finite number of symbols, then 
P is said to be a 2-computable probability measure (2~cpm). 

Levin [8, p 102, Def. 3.61 h_as defined a semi-computable 
probability meusure (scpm) Pe, and has shown it to be 
equivalent to 

p,(x(n)) Li Jima x 2-N(Q+(n),i) 
- i 

(7) 

where Q is an arbitrary (not necessarily universal) UIO 
machine. From (5) it is clear that & is a semi-computable 
measure in which Q is universal. 

A normalized semicomputuble probability measure 
(nscpm) is ‘a measure that is obtainable from a scpm by a 
normalization equation such as (6). It satisfies (2) and (3). 

A simple kind of probability measure is the binary 
Bernoulli measure in which the probability of the symbol 
1 is p. If p is a terminating binary fraction such as 3/8, 
then the measure is a 2-cpm. If p is a computable real 
number such as l/2 or l/3 or (1/2)fi , then the 
measure is a cpm. If p is an incomputable real or simply a 
random number between 0 and 1, then the measure is not 

a cpm. Neither is it a scpm nor a nscpm. Since comput- 
able numbers are denumerable, almost all real numbers 
are incomputable, and so this type of incomputable prob- 
ability measure is quite common. The most commonly 
used probabilistic models in science-i.e., continuous 
probabilistic functions of incomputable (or random) 
parameters-are of this type. Though none of the theo- 
rems of the present paper are directly applicable to such 
measures, we will outline some relevant results that have 
been obtained through further development of these theo- 
rems. 

While j,& is a semi-computable probability measure, we 
will show as a corollary of Theorem 2 that it is not a cpm. 
Moreover, P,& is a nscpm, but it is not a scpm. 

All 2-cpms are cpms. All cpms are scpms. All cpms are 
nscpms. However, scpms and ncpms have no complete 
inclusion relation between them, since, as we have noted, 
P,$ is a nscpm but not a scpm, and &, is a scpm but not a 
nscpm. Schubert [14, p. 13, Th. l(a)] has shown that all 
probability measures that are both scpms and nscpms 
must be cpms. It is easy to draw a Venn diagram showing 
these relations. 

Theorem 2: Given any universal UIO machine M  and 
any computable probability measure P there exists a finite 
positive constant k such that for all x(n) 

Ph(x(n)) > 2-kP(x(n)). (8) 
Here x(n) is an arbitrary finite string of length n, and k 
depends on it4 and P but is independent of x(n). 

We will first prove Lemma 1: 
Lemma I: Given any universal UIO machine and any 

2-computable probability measure P’ there exists a finite 
positive constant k’ such that for all x(n) 

Ph(x(n)) > 2-k’P’(x(n)). (9) 
Lemma 1 is identical to Theorem 2, but applies only for 

2-computable probability measures. Its proof will be simi- 
lar to that of Willis’ Theorem 16 [2, p. 2561 

Proof of Lemma I: From Willis ([2, p. 252, Theorem 
121, but also see [4, Lemma of the last Theorem] for a 
more transparent proof), we note that there constructively 
exists a FOR R, such that for all x(n) 

PRO(x(n))= x 2- N(&,x(n),i), P’(~(~)). (10) 
i 

Since R, is a FOR, it has only a finite number of m inimal 
codes for x(n), and they are all effectively computable. 
Since M  is universal, it has m inimal codes for x(n) that 
are longer than those of R, by an additive constant k. 
This may be seen by considering the definition of 
“m inimal code.” If u is a m inimal code for R, and 
RO(a)=.x(n), then M(Su)= x(n), S being the simulation 
instructions from R, to M . If (I’ is u with the last symbol 
removed, then since u is a minimal code, R,(u’)#x(n), 
implying M(Su’)#x(n), so Su must be a m inimal code for 
x(n) with respect to M . Thus, 

N(M,x(n),i)=N(F,,x(n),i)+k (11) 
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where k is the length of the M simulation instructions for for any finite k > 0 there exists a x(n) for which 
R,. As a result, P’(x(n)) > kP(x(n)). 
~2-N(&,x(n).i) 2 x 2-N(Ro,x(,),i)-k=2-kp’(x(n)) (12) F rom this fact and from Theorem 2, it is clear that PA 

i i cannot be a cpm. 
for large enough T. If it takes at most TXc,, steps for M to Levin [8, p. 103, Th. 3.31 has shown that if jQ(x(n)) is 
simulate the R, minimal code executions resulting in x(n), any semicomputable probability measure, then there ex- 
then “large enough T” means T > Txcnj. We have the ists a finite C > 0 such that for all x(n), 
inequality sign in (12) because MT may have minimal 
codes for x(n) in addition to those that are simulations of 

Fh(x(n)) > CFQ(x(n)). 

the R, codes. From this it follows that, since the normalization con- 
From (12), (5), and Theorem 1, stant of Ph is always > 1, 

Fh(x(n)) > 2-kP’(x(n)). (13) Ph(x(n)> > CtjQ(x(n))9 (16) 

In (6) we note that the normalization constant C(x(n): giving us a somewhat more powerJu1 result than Theorem 
is the product of factors 2. Note, however, that in (16) PQ is restricted to be a 

kM>) semicomputable probability measure, rather than a nor- 

&(x(i)O)+&(x(i)l) ’ 
malized semicomputable probability measure-a con- 
straint which will limit its applicability in the discussions 

Appendix A shows that each of these factors must be > 1. that fo11ow* 
As a result, Ph > &,, and from (13) we have P&(x(n)) > To what extent is Ph unique in satisfying the probabil- 
2-kP’(x(n)), h’ h w ic proves Lemma 1. To prove Theorem ity ratio inequality of (8)? In Sections V and VI we will 
2, we first note [2, p. 2511 that if P is any computable discuss other measures, also based on universal machines, 
probability measure and e is a positive real < 1, then there that may have this property. T. Fine notes [ 131 that if P is 
exists a 2-computable probability measure P’ such that known to be a member of an effectively enumerable set of 
for all finite strings x(n), probability measures [Pi], then the measure 

P(x(n))(l -E) < P’(x(n)) < P(x(n))(l +e). P’=E UiPi with ui > 0, x ai = 1 
Starting with our P, let us choose E = l/2 and obtain a i ( i ) 

corresponding P’ such that also satisfies 

P’ 2; P. (14) P’= x UiPi > 2-9, where k = - lgc+ 
i 

From Lemma 1 we can find a k’ such that and lg denotes logarithm to base 2. Under these condi- 
PA ) 2-k’P’ ) 2+-‘P (15) tions the solution to (8) is not unique. However, while the 

so, with k = k’ + 1, Theorem 2 is proved. 
set of all computable probability measures is enumerable, 

Corollary I to Theorem 2: Let [si] be the set of all 
it is not effectively enumerable, so this solution is not 

strings such that for all x 
usable in the most general case. 

One interpretation of Theorem 2 is given by the work of 
M(v) = K,(x), Cover [5]. Suppose P is used to generate a stochastic 

i.e., si is a code for the M simulation of R,. Let [$I be any 
sequence, and one is asked to make bets on the next bit of 
th e 

subset of [si] that forms a prefix set. If Is,!1 is the number of 
sequence at even odds. If P is known and bets are 

bits in the string si, then for all x(n) 
made starting with unity fortune so as to maximize the 
expected value of the logarithm of one’s fortune, then the 

P&(x(n)) >x 2-IsilP(x(n)). 
value of one’s fortune after n bits of the sequence x(n) 

(16) h 
i 

ave occurred is 2”P(x(n)). On the other hand, if it is only 

The summation is over all members of the prefix set [$I. 
known that P is a cpm, and P,& instead of P is used as a 
b 

The proof is essentially the same as that of Theorem 2. 
asis for betting, the yield will be 2”Ph(x(n)). The ratio of 

Q .E.D. 
yield using Ph to that using the best possible information 
is then P,&(x(n))/P(x(n)), which as we have shown is 

To obtain the best possible bound on PA/P, we would ) 2-k. 
like to choose the prefix set so that Cover also shows that if P is used in betting, then for 

? 2-‘s;’ 

large n the geometric-mean yield per bet is almost cer- 
tainly 2(ieH), where H is the asymptotic entropy per 
symbol (if it exists) of the sequence generator. If we do 

is maximal. It is not difficult to choose such a subset, not know P, and use Ph as a basis for betting, our mean 
given the set IsJ. yield becomes 2 -k/n2(‘-n). The ratio of the geometric 

Willis [2, p. 256, Th. 171 has shown that if P is any cpm, yield per bet of Ph to that of P is 2-k/“. For large n, this 
then there constructively exists another cpm P’ such that ratio approaches unity. 
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The bets in these systems depend on the conditional The proof of Lemma 1 is elementary and is omitted. 
probabilities of P and Ph. That bets based on P give the To prove Lemma 2, we will first show that A, = B, and 
maximum possible log yield, and that bets based on Ph then that A,+l-A,=B,+, -B,,, from which the lemma 
have almost as large a yield as P, suggests that their follows by mathematical induction. To show A, = B,, let 
conditional probabilities are very close. Theorem 3 shows DE P(x,(l)), D’zPh(x,(l)), and note that P(x,(l))= l- 
that this is usually true. D, P&(x*(l))=l-D’, bd=2Sd=D, and 16d’=26d’=D’. 

Then from (18) and (19) 

IV. CONVERGENCE OF EXPECTED VALUE OF 
TOTAL SQUARE ERROR OF P,& 

A,=DdZ(D,D’)+(l-D)d?(D,D’)=R(D,D’) 

B,=D(lgD-IgD’)+(l-D)(lg(l-D)-l&l-D’)) 
We will show that if P is any computable probability 

measure, then the individual conditional probabilities 
=R(D,D’) 

given by P,& tend to converge in the mean-square sense to A,=B,. (21) 

those of P. Next we compute B, + 1. B, was obtained by summing 2” 
Theorem 3: If P is any computable probability terms containing probability measures. The corresponding 

measure, then 2 ‘+’ terms for B,,,, are obtained by splitting each of the 

EP 
( 

n-l 
A jz, p (“i(n)) 

2” terms of B,, and multiplying by the proper conditional 
x0 (v - s:‘J2 probabilities. Then 

n-1 B 
(17) 

n+l=jzl [P(Xj(n)){js,"(k [P(xj(n))'G,"] 

Notation: -1g [ P~(Xj)‘j~~‘]) 

expected value with respect to P, 
jth sequence of length n, +(l-js,“)(lg [P(xj(n))'(l-is,")] 

conditional probabilities, given the first i bits 
of xj(n), that the next bit will be zero for P 

-lg [ p~(xj)*(l-js.n')])}] 

and Ph respectively, 
random $“, where j corresponds to the xi(n) 
randomly chosen by the measure P. 

The proof is based on two lemmas. 
Lemma 1: If O<x< 1, then 

=ji, [P (Xj(n>){jSnn(k p ("jCn)) 

-1g Ph(+(n))+lgQ-lg’6,“‘) 

+(l-4S;)(lgP(xj(n>)-lgP&(xj<n)) 
R(x,y) 2 x(lgx-lgy)+(l-x)(lg(l-x)-lg(l-y)) 

Lemma 2: Let 
&x-y)“. 

+lg(l-‘6,“)-lg(l-js,“‘))}] 

= jzl P (?(n))(lg c&(n))-lg P,ddn))) 

+ $j P(xj(n))[js,“(lgjs,“-lgjs,“‘) 
and j=1 

B, k j$I P(xj(n))(lg P(xj<n))-lg Ph(xj(n)))* (19) 
+(l-‘~;)(lg(l-‘6,“)-lg(l-js,“‘))] 

Then for n > 1, A,, = B,,. (22) 
To prove Theorem 3, we take the expected value of the 

= Bn+]il P (xj(n))R (js,n,‘S,n’)* 

lg of both sides of (8) and obtain TO obtain A,, + , -A,, we have 

k>B,,. 

From Lemma 2, 
k >A,. (20) 

From (18), (20), and Lemma 1, 
+ j$l P(Xj(n))R(js,“,js,“‘), 

since 
which proves Theorem 3. R(Ay,jG,“‘) = R( 1 --AS;, 1 -G;‘), 
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and so 

From (22) and (23), A,,+ r -A,, = B,,, , - B,,, which com- 
pletes the proof. 

Corollary 1 to Theorem 3: If P’ and P are probability 
measures (not necessarily recursive) satisfying the additiv- 
ity and normalization (2) and (3) and 

then 
P’(x,(n)) > 2-+)P(xi(n)), 

<k(n) In fi . 
The notation is the same as in Theorem 3 except that ‘6;’ 
is the conditional probability for P’ rather than Ph. The 
proof is essentially the same as that of Theorem 3. 

This corollary is often useful in comparing probability 
measures, since the only constraint on its applicability is 
that P’(x,(n))>O for all x,(n) of a given n, where i= 
1,2; * * ,2”. 

Ordinary statistical analysis of a Bernoulli sequence 
gives an expected squared error for the probability of the 
nth symbol proportional to l/n and a total squared error 
proportional to In n. This is clearly much larger than the 
constant k In fi given by Theorem 3. The discrepancy 
may be understood by observing that the parameters that 
define the Bernoulli sequence are real numbers, and as we 
have noted,, probability measures that are functions of 
reals are almost always incomputable probability 
measures. Since Theorem 3 applies directly only to com- 
putable probability measures, the aforementioned dis- 
crepancy is not surprising. 

A better understanding is obtained from the fact that 
the cpms to which Theorem 3 applies constitute a de- 
numerable (but not effectively denumerable) set of 
hypotheses. On the other hand, Bernoulli sequences with 
real parameters are a nondenumerable set of hypotheses. 
Moreover, Koplowitz [7], Kurtz and Caines [I I], and 
Cover [12] have shown that if one considers only a count- 
able number of hypotheses, the statistical error converges 
much more rapidly than if the set of hypotheses is un- 
countable. Accordingly, the discrepancy we have observed 
is not unexpected. 

When the measure P is a computable function of b 
continuous parameters, Theorems 2 and 3 must be slightly 
modified. We will state without proof that in this case the 
constant k in Theorem 2 is replaced by k(n) = c + Ab In n. 
Here n is the number of symbols in the string being 
described, A is a constant that is characteristic of the 
accuracy of the model, and c is the number of bits in the 
description of the expression containing the b’barameters. 

From Corollary 1 of Theorem 3, the expected value of 
the total squared error in conditional probabilities is 

(c+Ab Inn) In fi. 

V. CHAITIN’S PROBABILITY MEASURES AND 
ENTROPY 

Chaitin [3] has defined two kinds of probability 
measure and two kinds of entropy. Conditional probabil- 
ity is defined by 

PC(@) A x2-y (U(r,t*)=s) 

where r, s, and t are finite binary strings, and U( a, *) is a 
universal computer with two arguments. The acceptable 
first arguments (i.e., those for which the output is defined) 
form a prefix set for each value of the second argument. 
Also Irl is the length of the string r, and t* is the shortest 
string such that U(t*, A) = t, where A is the null string. 

U is “universal” in the sense that if C is any other prefix 
set computer such that C(s, t) is defined, then there is an s’ 
such that U(s’, t) = C(s, t) and Is’] < JsI + k, where k is a 
constant characteristic of U and C but independent of s 
and t. 

Conditional entropy is defined as 
H”(s/t) k min jr\ such that U(r, t*) = s. (24) 

Thus H’ is the length of the shortest program for s, given 
the shortest program for t. 

Unconditional probability and entropy are defined by 

(25) 

H’(s) 2 min Irl, (U(r,A)=s). (26) 
Note that P”(a) is not directly comparable to PA(*). On 
one hand, 2 ,P”(x,) < 1, the summation being over all 
finite strings xi. On the other hand, E:“=,Ph(x,(n))= 1, so 
E,Ph(x,)= co. 

While it is possible to normalize P’( .) so that it satisfies 
(2) and (3), we have not been able to demonstrate any- 
thing about the relationship of the resultant measure to 
Ph. P’(s/lsl), however, is comparable to Ph. Leung- 
Yan-Cheong and Cover have shown [4, proof of the last 
theorem] that 

P’(s/lsl) > 2-&P (s) (27) 
where P is any computable probability measure and k is a 
constant independent of the string s. 

It is not difficult to show that 

P”(s/lsl) > 2-k N(%s.i)=2-k’&(s) (28) 

where k’ is a constant independent of s. 
To see why (28) is true, suppose r is some minimal 

program for s with respect to MT. Then independently of 
T we can construct a program for s with respect to 
Chaitin’s U that is k’ bits longer than r. This program tells 
U to “simulate M, insert r into this simulated M, and stop 
when IsI symbols have been emitted.” Since U has already 
been given a program for IsI, these instructions are a fixed 
amount k’ longer than r and are independent of T. Since 
MT was able to generate s in < T steps with r as input, 
these instructions for U are guaranteed to eventually 
produce s as output. 

To be useful for induction, for high gambling yield or 
for small error in conditional probability, it is necessary 
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that a probability measure be normalizable in the sense of Proof Let us define W(n) = XT= 12-Hc(‘+(n)), where the 
(2) and (3) and always be z 0. When P’(s/lsl) is normal- sum is over all strings x,(n) of length n. Then from (31) 
ized using (6), we have not been able to show that (27) 
continues to hold. ii1 B*(xi(n)) = j$n WQ (35) 

Fine [ 131 has suggested a modified method of normali- 
zation using a “finite horizon” that may be useful for By Kraft’s inequality Z:= r W(n) < 1, so (35), which is the 
some applications. First a large integer n is chosen. Then latter part of the summation of W(n), must approach zero 
P’( * / *) is used to obtain a normalized probability distrib- as n approaches infinity. Q.E.D. 
ution for all strings of length n: Lemma 2: Let Pi be a set of nonnegative constants 

Q%(n)) = WWn)/ (s,, & ) P’W4. such that Z  Pi = 1. Then Z Pi lg Bi is maximized, subject to 
.d n the constraint that Z  Bi = k, by choosing Bi = kPi. This is 

A probability distribution for strings s(i) with i < n is proved by using Lagrange multipliers. 
obtained by 

Proof of Theorem 4: Consider a fixed value of n. The 
Q,f,(W = lx QW(n>>. (29) smallest value of G(n) occurs when 

(s’(n) : s(i) is a prefix of s’(n)) 

This probability distribution satisfies (2) and (3) and is 
>0 for all finite strings. Also, because of (27), 

EP(lg B*(x(n>>>= j, ‘Cxitn)) k B*(x(n)) 

Qifn(s(i)) > 2-kP(s(i)) (30) 
is a maximum. By Lemma 2, this occurs when 

for any computable probability measure P. Furthermore 
the constant k can be shown to be independent of n. 

B*(xi(n))=p(xi(n))~~~ B*(+>>. 

From (30) the proof of Theorem 3 holds without modifi- The m inimum value of G(n) is then 
cation for Q&. 

A difficulty with this formulation is the finite value of 
n. It must always be chosen so as to be greater than the 5 P(xi(n)) lg P(Xi(n))-lg P(x(n))j$, B*(x,(n)))) ;= I ( ( 
length of any sequence whose probability is to be 
evaluated. It is not clear that the distribution approaches a 
lim it as n approaches infinity. 

= -k ii1 B*(xi(n)) 

which by Lemma 1 approaches infinity as n approaches 
VI. COVER’S PROBABILITY MEASURE b* infinity. Q.E.D. 

Cover [5] has devised a probability measure based on 
Theorem 5: If P is any computable probability 

Chaitin’s unconditional entropy HC that is directly COm- 
measure and F(n) is any recursive function from integers 

parable to P,& Let us define the measure 
to integers such that lim ,,, F(n)= o. then there exists a 9 
constant k such that for all x(n) 

B*(x(n)) 4 x 2-W+04 
2 E(0, 1)’ 

(31) lg P(x(n)) -1g B*(x(n)) < k+ F(n). (36) 

where the summation is over the set of all finite strings [z]. To prove this we will exhibit a specific prefix computer 
Cover defines the conditional probability that the finite C such that (36) holds when Bz is computed with respect 

string x(n) will be followed by the symbol xn+ i to be to C. For any universal computer, the program lengths for 

b*k+ II++) A B*Mk+ d/B*(W). 
any particular string are at most an additive constant k’ 

(32) 1 onger than those for any other specific computer. As a 
We will examine the efficiency of B* when used as the result, -1g B* can only be greater than -1g B$ by no 

basis of a universal gambling scheme and obtain a bound more than the additive constant k’. Therefore proving (36) 
for the total squared error of its conditional probabilities with respect to any particular prefix computer is equiv- 
when used for prediction. These will be compared with alent to proving it for a universal computer. 
the corresponding criteria for Ph. 

Theorem 4: If P is any probability measure and 

G(n)=4& P(x(n)>-lg B*(x(n))), 
then 

lim  G(n)=w. n+co 
Lemma 1: 

The string x(n) is coded for C in the following way. 
(i) We write a prefix code of length k, that describes 

the function F(e). 
(ii) We write a prefix code of length k, that describes 

the probability function P(e). 

(33) 
(iii) We write a prefix code for the integer m  = F(n). We 

use a simple code in which m  is represented by m  l’s 
followed by a 0. 

(iv) The final sequence we write is a Huffman code 
(34) (which is also a prefix code), for strings of length n’, using 

the probability distribution function P(m). Since each 
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string has only one code, the shortest code is this unique This is because from (31) B*(x(n)) = B*(x(n)O) + 
code. Here n’ is the smallest integer such that F(n’) > m. B*(x(n)l)+2-Hc@(“)) for all n. The result is that B*’ > B*, 

We wish to code all strings that are of the form x(n)z so (36) is satisfied by B*’ as well as B*. However, B*’ does 
where the length of z, IzI, is n’--12. There are just 2”-” not satisfy (34). On the contrary, for all n, 
strings of this type for each x(n). The total probability 
(with respect to P(e)) of all such strings is exactly P(x(n)), 
i.e., 

;$, B*‘(xi(n>)= lo (39) 

(37) B*’ is at least as good as B* in approximating P, but B*’ 
is probably better, since both B*’ and P satisfy (39). 

The Huffman code for a string of probability P is of Though it seems likely that B*’ is as good as Ph in 

length [ - lg PI, where [al is the smallest integer not less approximating computable probability measures, we have 

than a. 
not been able to prove this 

Using our sequence of prefix codes for the string x(n)z, 
we have a total code length of k, + k, + (m + 1) + [ -1g 
P (x(n)z)l. Then 

Bz(x(n)) > x 2TH;@(“)“) 
lzj=n’--n 

> 2-kl-k,-m-2 2 21-[-lgP(x(n)“)] 

lzl=n’-n 

where Hi is Chaitin’s unconditional entropy with respect 
to machine C. The first inequality follows from (31). From 
lg x < 1 - [-lg x] and (37), 2-kl-kz-“-2P(x(n)) < 
BE(x(n)) or lg P(x(n)) - lg BE(x(n)) <k, + k, + m + 2. 
Since m = F(n) and -1g B* is at most an additive con- 
stant greater than -1g B& the theorem follows directly. 

Q .E.D. 

From Theorems 4 and 5, it is clear that, while lg 
(P/B*) approaches infinity with n, it does so more slowly 
than any unbounded recursive function of n. In contrast 
lg (P/P&) is bounded by a constant. 

Similarly, if b* is used in Cover’s gambling scheme, the 
ratio of its yield to the maximum feasible yield is 2-k-F(n), 
in which F(n) approaches infinity arbitrarily slowly. Con- 
trast this with Ph in which the corresponding ratio is a 
constant. The expected total square error for b* is In 
fi (k + F(n)) in contrast to k In fi for Ph. 

A major reason for the deficiency of b* is its not being 
normalized in the usual way, i.e., 

b*(Olx(n))+ b*(llx(n)) < 1. 
If we define b*’ by 

VII. ENTROPY DEFINITIONS: K, H”, AND H* 

Kolmogorov’s concept of unconditional complexity of a 
finite string was meant to explicate the amount of infor- 
mation needed to create the string-the amount of pro- 
gramming needed to direct a computer to produce that 
string as output. His concept of conditional complexity of 
a finite string x with respect to a stringy was the amount 
of information needed to create x given y. 

He proposed that unconditional complexity be defined 
by 

K(x(n)) A min Irl, (U(r) = ~(4) 

where U is a universal machine and r is the shortest input 
to U that will produce the output x(n) and then halt. 
Conditional complexity is defined by 

K(x(n)/y(m)) k fin 14, ( WAmN = x(m)). 
The complexity of the pair of finite strings x and y is 
defined by K(x,y) = K( g(x,y)), g(x,y) being any recur- 
sive, information-preserving, nonsingular function from 
pairs of finite strings to single finite strings. 

The entropy equation 

H(w) = H(x) + K(Y) 
is of central importance in information theory. 
Kolmogorov’s complexity does not satisfy this equation 
exactly; rather, 

K(x,y)=K(y/x)+K(x)+a, 

and Kolmogorov [9] has shown with the following exam- 

b*‘(x,+,lx(n)) g B*(x(n)x,+,)/B*(x(n)O)+ B*(x(n)l) ple that (y can be unbounded’ 

then b*Vlx(n)) + b*‘Ulx(nN = 1. We can define 
Let x(n) be a random binary string of length n, let l! be 

the integer of which x(n) is the binary expansion, and let 
B*‘(x(n)) 4 II:= ,b*‘(xJx(i - 1)). Noting from (32) that J@) be a random string of length 1. Then K(y,x) = e + c,, 

B*(x(n)) = $I b*(x;lx(i- 1)) 
K(y/x)=l?+c,, and K(x)=n+c,=lg e+c,. Here c,, c2, 
cj, and cq are all numbers that remain bounded as n+oo. 
From the foregoing, it is clear that a = K(x,y) - K(y/x) - 

it is clear that K(x) = c5 - n is unbounded. 

B*‘(x(n)) = fi b*‘(xilx(i- 1)) 
On the other hand, Kolmogorov and Levin have shown 

[8, p. 117, Th. 5.2(b)] that if p is the absolute value of (Y, 
B*(x(n)) ;=I b*(x,lx(i- 1)) then 

=;!!, B*(x(r,$~~??{x(n)l) > ” (38) 
P < wcv)l 

where I K( .)I denotes the length of the string K(e), and xy 
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is the concatenation of the strings x and y. We see that if 
x and y are very large, then j3 is very small relative to 
them. 

Chaitin [3] has shown that his entropy satisfies 
H’(x,y) = HC(x)+ HC(y/x) + k 

where HC(x,y)= HC( g(x,y)), g(x,y) being any recursive, 
information-preserving nonsingular mapping from pairs of 
finite strings to single finite strings, and k is an integer 
that remains bounded though x and y may become arbitr- 
arily long. 

We now define H*, a new kind of entropy for finite 
strings, for which 

H*(x,Y) = H*(x) + H,*(Y) 
holds exactly. Though H* is close to the H of information 
theory, certain of its properties differ considerably from 
those of Kolmogorov’s K and Chaitin’s H’. 

Before defining H*, we will define two associated prob- 
ability measures, Ph(x,y) and PAX(y). The reasons for 
these particular definitions and the implied properties of 
PA are discussed in Appendix B. Just as P&(x) is the 
probability of occurrence of the finite string x, Ph(x,y) is 
the probability of the co-occurrence of both x and y, i.e., 
the probability that x and y occur simultaneously. The 
definition is as follows. 

If x is a prefix of y, then Ph(x,y)= P,&(y). 
If y is a prefix of x, then Ph(x,y)= P&(x). 
If x is not a prefix of y and y is not a prefix of x, then 

Ph(x,y) = 0 since x and y must differ in certain nonnull 
symbols, and it is therefore impossible for them to co-oc- 
cur. This completely defines Ph(x,y). 

Pbx(y) is the conditional probability of y’s occurrence, 
given that x has occurred. We define 

MXPY> 
J-%x(Y) A ph(x) * (40) 

From (40) and the definition of Ph(x,y), the following is 
clear. 

If x is not a prefix of y, and y is not a prefix of x, then 
P,Lx(Y> = 0. 

If y is a prefix of x, then P,&,(y) = 1. 
If x is a prefix of y, then PhJy) = (Ph(y)/Ph(x)), for 

in this case y is of the form xa and Pkx(y) is the prob- 
ability that if x has occurred a will immediately follow. 
Following Willis [2, Section 4, pp. 249-2541 we define 

H*(x) k -1g PA(x) 

H*(x,Y) A -k P&,Y> 

H,*(Y) A -k f’.k,x(~). (41) 
From (40) and (41), we directly obtain the desired result 
that 

H*(x,y) = H*(x) + H,*(y). 

The properties of H,*(y) differ considerably from those 
of HC(y/x) and K(y/x). Suppose x is an arbitrary finite 
string and y = f(x) is some simple recursive function of x 
-say y is the complement of x, (O+l, l-0). Then 

HC(y/x) and K(y/x) are bounded and usually small. 
They are both something like the additional information 
needed to create y, if x is known. H,*(y) has no such 
significance. If x and y are complements, then P,&(y) = 0 
(since neither can be the prefix of the other) and H,*(y)= 

The differences between the various kinds of entropy 
may be explained by differing motivations behind their 
definitions. P,&(x) was devised in an attempt to explicate 
the intuitive concept of probability. The definitions of 
P&,Y) and PA(Y) were then derived from that of P,&(x) 
in a direct manner. 

HC(y~x) and K(Y/ x were devised to explicate the > 
additional information needed to create y, given x. The 
definitions of H’(x), K(x), etc., were directly derived 
from those of HC(y/x) and K(y/x), respectively. 

We will next investigate the properties of H*, K, and 
H’ when applied to very long sequences of stochastic 
ensembles and compare them to associated entropies. 

Levin states [8, p. 120, Proposition 5.11 that for an 
ergodic ensemble, 

lim  K (x(n)> =H withPr 1. n+eo n (42) 

If the ensemble is stationary but not ergodic, the state- 
ment is modified somewhat so that H varies over the 
ensemble. Unfortunately, no proof is given, and it is not 
stated whether or not the ensemble must have a comput- 
able probability measure. 

Cover has shown [5] that if (42) is true then it follows 
that for an ergodic process 

J&c i H”(x(n))= H with Pr 1. 

Leung-Yan-Cheong and Cover [4, last Theorem] have 
shown that for any stochastic process definable by a 
computable probability measure P, 

H,, < E,H’(X(n)/n) < H,, + k (43) 
where H,, is the entropy of the set of strings of length n: 

Hn ’ ;!I P(x;(n)) k f’(Xi(n>)y 

and k is a constant that depends on the functional form of 
P but is independent of n. If P defines an ergodic process, 
then 

lim  -1,=H, n+oo n 
the entropy of the ensemble. In this case from (43) we 
obtain 

J~I~I $ E,H’(X(n)) = H. (49 

Theorem 6: For any stochastic process definable by a 
computable probability measure P, 

H,, < E,H*(X(n)) < H,, + k (45) 
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where Comparison of Theorem 7 with (43) and (45) suggests 

&H*(X(n)) ’ Z, P(x;(n))H*(x;(n)), 

that EH*(X(n))/ n and EHc(X(n)/n)/n approach H 
more rapidly than does EHC(X(n))/n. A more exact com- 
parison can be made if a bound is known for the rate at 

and k is a constant, independent of n, but dependent which E( -1g P(X(n)))/n approaches H. 
unon the functional form of P. 

To move this. note that from Theorem 2, 
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E,H*(X(n)) < H, + k. (46) 
APPENDIX A 

From Lemma 2 of Theorem 4, 

;$I p(xi(n)) k Ph(Xi(n)) 

Let [cu,] be the set of all minimal codes for x(i), and let [ pmj] 
for fixed m be the set of all finite (or null) strings such that 
(Y,,$,,~ is either a minimal code for x(i)0 or for x(i)l. Then [ /3,,j] 

has maximum value when 
for fixed m forms a prefix set, so 

%f (Xi(n>) = P(xi(n)>, 

~2-IflJg 1. (4% 
i 

so By definition 

-;$, P(Xitn)) k P(Xitn>> ( - ;:I PM)) k Ph(xi(n)> 

and 

&(x(i))= 2 2-14, (50) m 

P‘&(x(i)O)+Ph(x(i)l)= x ~2-‘~s~’ 
m j 

H,, < E,H’(X(n)). (47) = ~2-1%1~2-1&1. (51) m i 
The theorem follows directly from (46) and (47). As we 
noted in (44), if P is ergodic, From (49), (50), and (51), 

,ll$ i EpHC(X(n)) = H. 
&(x(i)) > P&(x(i)O)+Ph(x(i)l). 

Q.E.D. 

Theorem 7: If APPENDIX B 

F;(n) A &(k P(X(n))+HC(X(n))) 
= - H,, + E,(H’(X(n))), (48) 

then lim,,, F(n) = co. 

Lemma I: 

This lemma is a direct consequence of the Kraft in- 
equality from which 

x 2 2-HYxdn)) < 1. 
[ n=l k=l 1 

To prove the Theorem we first rewrite (48) as 
P(n) = EP(lg P(x(n)) -1g (2-H’(x(n)))). 

The theorem is then proved via the arguments used to 
establish Theorem 4. Q .E.D. 

Our definitions of P,&(x), Ph(x,y), and PAX(v) correspond to 
Willis’ definitions of PR(x), PR(x,y), and P:(y), respectively. 
Willis regards PR(x(n)) as a measure on the set of all infinite 
strings that have the common prefix x(n). This measure on sets 
of infinite strings is shown to satisfy the six axioms [2, pp. 249, 
2501, [lo, chap. 1 and 21 that form the basis of Kolmogorov’s 
axiomatic probability theory [lo]. 

We can also regard P&(x(n)) as being a measure on sets of 
infinite strings in the same way. It is easy to show that the first 
five postulates hold for this measure. From these five, 
Kolmogorov [lo, Chapter l] shows that joint probability and 
conditional probability can be usefully defined and that Bayes’ 
Theorem and other properties of them can be rigorously proved. 
Our definitions of Pi and PhJy) are obtained from his 
definitions of joint and conditional probabilities, respectively. 

A proof that this measure satisfies the sixth postulate (which 
corresponds to countable additivity) would make it possible to 
apply Kolmogorov’s complete axiomatic theory of probability to 
Ph. While it seems likely that the sixth postulate is satisfied, it 
remains to be demonstrated. 
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Block Coding for an Ergodic Sourtie Relative 
to a Zero-One Valued Fidelity Criterion 

JOHN C. KIEFFER 

Abstnref--An effective rate for block coding of a stationary ergodic 
soorce relative to a zero-one valued fidelity criterion is defined. Under 
some mild restrictions, a soorce coding theorem and converse are given 
that show that the defined rate is optfmom. Several examples are given 
that satlsfy the restrictIons imposed. A new generalization of the Sban- 
non-McMillan Theorem is employed. 

I. INTRODUCTION 

L ET (A, %) be a measurable space. A will serve as the 
alphabet for our source. For n = 1,2, - - * (A “, Fn) will 

denote the measurable space consisting of A “, the set of 
all sequences (x1,x2; * . ,x,) of length n from A, and ‘$,, 
the usual product u-field. (A O”, Fm) will denote the space 
consisting of A”, the set of all infinite sequences 
(XI,.&. * * ) from A, and the usual product u-field Tm. Let 
TA :A”+Am be the shift transformation TA(x1,x2; - -)= 
( x2,x3;. .). W  e e me our source ,u to be a probability d f’ 
measure on A”, which is stationary and ergodic with 
respect to TA. 

Manuscript received February 14, 1977; revised November 1, 1977. 
The author is with the Department of Mathematics, University of 

Missouri, Rolla, MO 65401 

Suppose for each n = 1,2, - * * , we are given a jointly 
measurable distortion measure p, : A n x A n+[O, 00). We 
wish to block code p with respect to the fidelity criterion 
F= bn)T.= 1’ Most of the results about block coding a 
source require a single letter fidelity criterion [ 1, p. 201. An 
exception is the case of noiseless coding [2, Theorem 
3.1.11. In this case, we have p,(x,u) = 0 if x =y and p,(x,y) 
= 1 if x#u. In this paper we consider a generalization of 
noiseless coding, where we require each distortion 
measure p,, in F to be zero-one uulued; that is, zero and 
one are the only possible values of p, allowed. Such a 
fidelity criterion F we will call a zero-one valued fidelity 
criterion. 

We will impose throughout the paper the following 
restriction on our zero-one valued fidelity criterion F= 
{Pn>* 

RI : If p,(x,y) = 0 and pn(x’,y’) = 0, then 

P,+~((x,x’),(Y,Y’))=~, m ,n= 62; - -. 

In the preceding, we mean (x,x’) to represent the 
sequence of length m+ n obtained by writing first the 
terms of x, then the terms of x’. Equivalently, R 1 says 
P,+,((x, ~‘1, (u/N ( P,,&v> + P&‘,Y’). R 1 is a con- 
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