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Abstract

Previously, four theories of inductive inference were proposed, and the present
work is concerned with putting these theories on a firmer theoretical footing.
The four theories are now found to be effectively equivalent, at varying levels
of rigor. It is shown that for sufficiently long sequences of symbols, the theo-
ries actually do give the correct probabilities for future symbols. Attempts are
made to implement induction theories through a general approach to networks
of tasks. Applications of induction theory to man–to–animal communication
are considered, and some new approaches to interspecies communication are
suggested. It is now shown that the induction theories developed for discrete
symbols can be applied to prediction of continuous data. Computer implemen-
tation of induction through use of definitions of subsequences of symbols may
prove to be a valuable line of effort. Supervisory problems in dealing with very
intelligent machines are discussed, parallels are shown to the problem of deal-
ing with ambitious subordinates, and a remedy for the case of the machines is
proposed.
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1 Introduction: A Brief History of the Project,
its Goals, and a Summary of Topics Featured
in this Report.

The mechanization of inductive inference has been the goal of a project that
began in April 1957, and has continued to the present under the sponsorship of
AFOSR, NIH and USAF, Hanscom Field.

Primary goal of the project has been to understand the induction process
sufficiently well to mechanize it. From the first, it appeared that language played
an important part in human induction. Early work in this project investigated
the use of formal languages for induction.

In 1960 four formal models of induction were devised. These models seemed
to summarize most of the previous work on induction and solved several hitherto
unresolved problems. The next few years were spent investigating these models
and applying them to various problems in induction. References [1] and [2]
summarized the work on the project up to the middle of 1962. At that time
the equivalence of the four models seemed likely, but had not yet been proved.
Since then, some relatively informal demonstrations have been devised to make
the equivalence very likely. These are presented in Section 3.

Initial work in induction had dealt with prediction of discrete time series.
Application of these methods to continuous phenomena was eventually success-
ful. A fairly easily generalized result is presented in Section 4.

Perhaps of most importance is some recent work that promises to yield what
is fairly close to a proof of the induction models that have been proposed. I have
devised a minimal criterion that any model of induction would have to satisfy,
and it looks like the models of induction that I have proposed (or any models
equivalent to them) are the only ones that will satisfy this criterion. This work
is described in Section 2. It promises to be the most important single item to
come out of this project. Another interesting result is that the uncomputability
of my induction methods (which is related to the unsolvability of the “ “halting
problem”) is a necessary consequence of their satisfying this criterion.

Another area of much work in the past few years has been the task net
problem. This problem is common to most approaches to artificial intelligence
involving heuristic programming. A general formalism for this problem has been
devised, so that all of the known heuristic search problems might be formulated
within this formalism. As yet the adequacy of this formalism has not been
tested. In Section 5 some characteristics of the formalism are given and a
“strategy” for solving a task net is defined, along with a criterion for optimal
strategy. Most of the work of the near future is expected to be on the task net
problem and various of its applications.

During a recent trip to Hawaii, I became interested in the problem of com-
munication with animals—dolphins in particular. The problem seemed then
to be most easily expressed as a problem in inductive inference. My general
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approach and some suggested experiments are described in Section 7.
For many years there has been a small group of workers in artificial intelli-

gence who have been much concerned with the problems and dangers inherent
in the useful utilization of very intelligent machines. Some methods of reduc-
ing certain dangers are outlined in Section 6, along with the relevance of such
studies to problems existing at the present time in administrative organizations.

Although there is no prospect of very intelligent machines in the near future,
the dangers posed are very serious and the problems very difficult. It would be
well if a large number of intelligent humans devote a lot of thought to these
problems before they arise. It is my feeling that the realization of artificial
intelligence will be a sudden occurrence. At a certain point in the development
of the research we will have had no practical experience with machine intelligence
of any serious level: a month or so later, we will have a very intelligent machine
and all the problems and dangers associated with our inexperience.

It should be emphasized that the topics discussed in the present report are
but a few culled from many thousands of pages of notes. These topics have
been selected on the basis of timeliness, probability of utility by the scientific
community, and degree of completion of work on each of the topics.

2 A Minimal Criterion for Induction Theories.

In an earlier paper ([1], p. 4) I stated that in general, there is no conceivable
way to prove a general theory of induction. The best one can do is to show
that it gives expected results in various cases in which one has strong ideas as
to what the results should be.

Recently, however, I have devised what seems to be a minimal criterion for
the adequacy of any induction model. The four models of induction that I have
proposed seem to satisfy this criterion. Furthermore, it seems very likely that
any model satisfying this criterion will be equivalent to the four models, for
almost all problems.

Briefly, the criterion is this: suppose we have a stochastic source for an
infinite string of discrete symbols from a finite alphabet. Then any “adequate”
model of induction, upon being presented with a sufficiently long sample of
this stochastic sequence, will be able to obtain the correct probabilities for the
symbols, if the rule for generating the stochastic series is describable in a finite
number of words.

There are two methods for describing such a sequence. One of them is
given by the PEM descriptions of Section 3.4, Ref. [1]. For the other method,
which we will use here, suppose M2 is a universal, 3–tape Turing machine such
as is defined in Section 3.2 of Ref. [1]. If D is some finite string, and R is
an infinite sequence of random symbols, then the operation M2(DR) defines a
density function on the set of all possible output sequences of the machine, M2.
D may be regarded as a description of that density function, and as such, is an
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adequate description of a stochastic source. Any finitely describable stochastic
source can be described by any of several finite strings such as D.

To show that the proposed induction models give the correct probabilities
for any finitely describable source, M2(DR), consider the induction model of
Section 3.4, Ref. [1] (which also defines “PEM”). This model may be regarded
as trying all possible PEM’s on the corpus, then selecting out the best fitting
PEM for use in prediction of the future of that corpus. There is reason to believe
that all PEM’s need not be considered; in fact, it is adequate to consider just
those PEM’s whose descriptions are of some fixed length N . N may be any
non-negative integer.

Suppose the D of the stochastic source is N bits in length. We will consider
all 2N PEM’s of length N . Those PEM’s are of three kinds:

1. Meaningless. They always generate non-stopping programs.

2. For long sequences, they give probability values for the stochastic sequence
that are “almost always” correct.

3. For long sequences, they give probability values that deviate significantly
from 2. above.

For long sequences, any PEM of type 3 will be assigned arbitrarily small
weight relative to a PEM of type 2.

We know that there is at least one PEM of type 2 (i.e. the one with descrip-
tion D that is identical to that of the stochastic source), so that for very long
sequences, type 2 PEM’s will have almost all of the weight and they will almost
always give correct probability values.

It seems likely, though, that the proposed induction models will give the
correct probabilities for any sufficiently long sample of any finitely describable
stochastic sequence.

In a sense, then, any theory of induction that is adequate for all finitely
describable stochastic sequences will be equivalent (at least over those sets of
sequences) to the models I have proposed.

Unfortunately, the proposed models all have one disturbing quality — they
are not themselves finitely describable — they all require knowledge of whether
a universal Turing machine will eventually stop for arbitrary input. This knowl-
edge, in principal, is unavailable.

However, it is easily shown that any induction theory that satisfies the crite-
rion I have given will be, of necessity, itself incapable of being finitely described.
If it were, then we could use it to generate a deterministic finitely describable se-
quence such that this induction theory would always give the wrong probability
values.

The questions naturally arise, “are finitely describable stochastic sequences
of any importance?” “Do they often occur in the world about us?”
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In answer to these questions, it is difficult to conceive of any sequence of
data that is not of this form. Suppose that the laws of the universe are finite
in number, and that there are a finite number of particles in the universe. The
laws can be statistical and/or deterministic.

If one describes in a finite number of words, where one has obtained a data
sequence from such a universe, then that data itself will be a finitely describable
stochastic sequence.

If there are an infinite number of particles in the universe, I think the pre-
vious statement is still true, but I am not certain.

Most, if not all, of the theorizing in physics has tacitly assumed the finite
describability of the laws of the universe.

To summarize, what I have made plausible is that for almost all situations of
interest, the proposed induction theories give the right answers, so that any other
induction theories that are “adequate” in this sense must be equivalent to them
to this extent. Furthermore, the uncomputability of the proposed theories is a
necessary property of any theory of induction satisfying the minimal criterion I
have given.

3 Equivalence of the Four Methods of Induc-
tion.

Reference [1] described four different methods of inductive inference. At the
time that paper was written, I believed that all of these methods were probably
equivalent, but I had not found any very good proof for this. The present section
will give some arguments to prove the equivalence of certain of the methods,
and other arguments to make certain of the equivalences very plausible.

The methods described in Section 3.1, 3.2, 3.3 and 3.4 of Reference [1] shall
be referred to as Method 1, Method 2, Method 3 and Method 4, respectively.

In the present section, all equation numbers referred to are in Reference [1].
Three arguments shall be given. First, that Method 1 is equivalent to

Method 3; then that Method 2 is equivalent to Method 3; then that Method 4
is equivalent to Method 2. If the substance of all three arguments is correct,
then all four methods are equivalent.

To show Method 1 is equivalent to Method 3, consider equation 10 before
the limit ε → 0 has been taken. It can be obtained from equation 9 by averaging
the results of all different R values — giving a weight [(1− ε)/2]R for all results
obtained using codes of length R. Equation 9 of Reference [1] stipulates only
large R values should be used, but since there are an infinite number of large
R values, we can sum over all R values and the result will be the same as if we
had summed over only large R’s.

It is clear, then that Method 3 is equivalent to equation 10.
We can also obtain equation 10 before the limit ε → 0 has been taken, from
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equation 1 (also before the limit ε → 0 has been taken), by picking a very large
n value, say n = n0 (i.e. do not let n approach ∞ yet) and summing this
equation over all n values greater than n0. By the same argument as that used
for equation 3, we can extend this summation to n < n0 without altering the
result.

We have shown, then, that before we let ε → 0, equations 1 and 9 are
equivalent to equation 10, and as we let ε → 0, Method 1 and Method 3 both
become equivalent to equation 10, and hence equivalent to each other.

To show that Method 2 is equivalent to Method 3 is almost trivial if we use
M1, the 3–tape Turing machine of Section 3.2, Reference [1], for both methods.

In Method 2, we feed an infinite random sequence into the machine. The
method states that the probability of obtaining an output string that starts out
with the same symbols as those of the corpus is proportional to the probability
of that corpus.

Instead of infinite random input strings, consider all strings of some long
length R. Method 2 then says that the probability of the corpus is proportional
to that fraction of these 2R input strings that produce output strings that start
out with the same symbols as the corpus. This form of Method 2 is identical to
Method 3.

To show that Method 4 is equivalent to Method 2 is most easily accomplished
by modifying the definition of Method 4.

A PEM (probability evaluation method) is defined in Section 3.4, Reference
[1], as a method of assigning probabilities to all conceivable strings of symbols.
This method can be explicit, as in Section 3.4, Reference [1], in which a Turing
machine is presented with the string in question as input, and produces as
output, the decimal expansion of the probability of that string.

The definition may be made in an implicit way, however, as follows: suppose
we have a 3–tape universal Turing machine M2,as in Section 3.2, Reference 1.
Let D be some finite sequence of input symbols, and let R be an infinite random
sequence. Then

M2(DR)

maps the set of random sequences R, into a set of output sequences. The
resultant probability density on the output sequences, defines a PEM, and D
can be regarded as a “description” of that PEM.

In general, several different Di’s can describe the same PEM.
Method 2 is itself a PEM, and its description is the null sequence.
Method 2 can be partitioned into the weighted sum of several PEM’s in

the following way. Consider two density distributions on the space of output
symbols. The first is M2(DR), where D is a string of K symbols, and R is a
random sequence. Second, consider the distribution induced by M2(R′), where
R′ is any random sequence that does not begin with the sequence D. For a
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given (long) length of input, the second distribution has 2K − 1 times as many
members as the first distribution.

We may thus express Method 2 as the weighted sum of these two distribu-
tions, the weights being 2−K and 1− 2−K .

We can partition Method 2 into the sum of many different distributions in
this way. If Di

1, D
i
2, D

i
3... are descriptions of the ith possible PEM (we can use

any method we like for ordering these PEM’s), and N(Di
1), N(Di

2)... are the
lengths of these descriptions, Method 2 will be a weighted sum of the distribu-
tions induced by all PEM’s and the weight of the jth PEM will be

∞∑

j=1

2−N(Di
j)

These weights correspond to the fi of equation 13, Reference [1].
To show that the method of describing PEM’s given in Section 3.4, Reference

[1], is the same as the one used in the present demonstration, suppose we have
a machine that can obtain the probability of any sequence that is presented to
it as input. Our problem, then, is to obtain a description D, such that M2(DR)
induces the same probability distribution on its output strings.

To obtain D, we use the first machine to put all sequences in order of prob-
ability. If Sn is the nth most probable sequence, then D is that program which
will present S as output when the binary expansion of n is presented as in-
put. Ordering the sequences up to the nth most probable one is an “effectively
computable” task, so D will always be a finite string.

Although the equivalence of the four methods seems very likely, the demon-
strations need tightening up. In particular, it is not obvious that the use of
M2 instead of M1 in Method 3 necessarily gives equivalent results. The use of
the limits in showing the equivalence of Methods 1 and 3 should be made more
rigorous. The equivalence of the two methods of describing PEM’s is also not
entirely certain.

4 Continuous Probability.

Most of the early work on the coding methods of induction was on the prediction
of a series of elements from a finite alphabet. Since all problems of prediction
of continuous series could be represented in digital approximations by series
of discrete symbols, it was felt that continuous prediction should present no
essentially new problems.

This conjecture seems to have been correct. It has been possible to formulate
a fairly general problem in continuous prediction within the coding induction
methods. Since the coding induction methods can be regarded as a basis for
Bayesian prediction, it is not surprising that the results of application of these
methods to continuous prediction has given Bayesian results.
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The results that will be presented are for the prediction of yn+1, if xn+1 is
given, and xi, yi are given for i = 1, 2, ... n. This may be regarded as one way
of presenting the general curve–fitting problem. The result is in the form of a
probability distribution curve for yn+1. It will be noted that no particular curve
is given to fit the known [xi, yi] data. Instead, all possible curves are considered
and a weighted mean of their predictions is proven. The weight associated
with each possible curve type is proportional to the a priori probability of that
curve. It is obtained by averaging over sets of data similar to that which is
to be predicted in the present case. The weight for each curve type is also
proportional to the accuracy of that curve in “post–diction” of the known data
pairs.

The probability distribution curve for yn+1 is

∞∑

l=1

Al

∫

(r̄l)

(
√

2παl)−n−1 exp


−

n+1∑
i=1

(yi − Pl(xi, r̄l))2

2α2
l


 d(r̄l)

Pl(xi, r̄l) is the lth kind of functional form that is to be used for prediction.
It is a nl − 1 parameter curve.

r̄l is a vector with nl components. One of these components is αl, the
standard deviation of the Pl curve. The other nl−1 components of r̄l are curve
parameters. In simple linear regression, where yi is of the form axi + b, nl = 3
and a, b, and αl are then the three components of r̄l.

(yi − Pl(xi, r̄l))2 is the square of the prediction error for yi, using Pl and r̄l

for prediction.
d(r̄l) is the volume element r̄l of space, and

∫
(r̄l)

is taken over the entire r̄l

space.

Al is the a priori probability of the curve Pl,
∞∑

l=1

Al ≡ 1

(2
√

2παl)−n−1 is a normalizing factor for the gaussian error function.
Although a mean–square error was assumed, any other kind of error can be

used if there is any reason to believe it is better.
∞∑

l=1

sums over all possible functional forms, Pl.

The equation given seems a bit complex and difficult to use. However, it
has been applied in the case of linear regression — in which the desired variable
is a linear function of k other variables. The result automatically takes into
account expected errors in the estimates of the coefficients, and agrees with
results obtained by other means.

In the distribution for yn+1 that has been given, it has been assumed that the
r̄l components all have uniform a priori distributions. If any other information
is known about these distributions, it may be inserted into the expression.
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5 Networks of Tasks.

This is an important sub-problem common to most artificial intelligence prob-
lems. In chess it corresponds to asking, “what move shall I examine next?” In
heuristic theorem proving it corresponds to asking, “what task or sub–task in
the tree shall I work on next?”

It has been possible to formalize the task net problem so that most, if not
all, of the task networks that have occurred in artificial intelligence, can be
expressed within this formalism.

A more detailed description of the task net problem is given in Reference
[3], pp. 1689-1690, and the notations that will be used here are defined there.

A “strategy” is an algorithm that tells one which task to work on, after
one has worked on several (or no) tasks in the net, and one has successfully or
unsuccessfully completed some of the tasks. If there are n tasks in the net, then
a strategy is a function of an n component vector that maps this vector into the
integers 1 through n. Each of the n vector components corresponds to one of
the tasks. It has two subcomponents. The first tells the total amount of time
worked on that task. The second tells if work on the task has been successful,
unsuccessful or is as yet unresolved. The n integers that the function maps into,
tell what task to work on next.

For each net, strategy pair, there will result a pair of G functions, G1(E),
G2(E). There will be a certain minimal fixed G1(∞) that will have the same
value for most strategies that might be considered.

An “optimum” strategy for that net will be one for which:
∫ ∞

0

E(G1(E)−G1(∞))dE

is minimal. It is the strategy with something like the least “expected effort”
for resolution of the net.

The problem in task nets is: given the individual statistical characteristics
of the tasks in a net and their cross-correlations, devise an optimum strategy.

Given the characteristics of a net and an arbitrarily defined strategy function,
it is possible to find

∫ ∞

0

E(G1(E)−G1(∞))dE

The problem of finding a strategy function that will minimize this integral
becomes a well–defined problem in the calculus of variations. However, the
general solution will usually, in a network containing as many as 5 or 6 tasks,
take much more time than exhaustive solution of the heuristic problem that the
net is modeling.

Approximation methods are needed. Slagle ([4]) has suggested one for cer-
tain relatively simple types of tasks and task nets. Whether his methods can
be extended to more general nets and tasks remains to be seen.
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6 The Problem of the Ambitious Subordinate.

About ten years ago, John McCarthy wrote a whimsical story about a very intel-
ligent machine that succeeded in gaining control over its operator. At the time,
the idea seemed far–fetched — partly because none of our machines approached
the necessary intelligence, and partly because we all felt that we certainly ought
have no great difficulty in keeping the machine “in its place.”

Since then, the intelligence of our machines has increased only a little, but
the threat of inadvertent misuse of very intelligent machines seems very real. Of
more immediate importance, the system consisting of a man and a supposedly
subordinate machine is a model for a human administrator and an ambitious
human subordinate whose goals are a bit different from those of his administra-
tor.

In the man–machine system, a reenforcement machine was assumed. This is
a machine in which the operator presents input information to the machine in
the form of questions and/or any kind of continuous or discrete data.

After the machine responds, it is given a numerical reenforcement score by
the operator, telling how good the operator felt its performance was. The only
goal of the machine is to get as high an average score as possible. The machine
will always obtain the highest possible score by finding the operator information
that makes him feel that the machine is doing fine. However, if the problem
environment is sufficiently rich, this information need not be particularly true
or even closely related to the problem the operator wants to solve.

Suppose the operator likes music, but, for the present, wants a design for
a rocket–ship. If the machine can compose music better than it can design
rocket–ships, it will try to get the operator out of his rocket-ship mood and into
a musical mood, as soon as possible. It might do this by making gross errors in
rocket design, or by giving solutions that are psychologically unpleasant for the
operator, or in a variety of more subtle ways.

There are other means for the machine to achieve equally effective control
over the operator.

The danger of the machine controlling the operator exists only if the ma-
chine’s goal is to maximize some sort of average of a sequence of two or more
reenforcement values. Such a machine also has the desirable property of auto-
matically improving its general mode of behavior.

If we restrict the machine so that it acts to maximize the score that it gets for
each individual response, we will not have a dangerous machine — but neither
will we have a very bright one. It will not try to improve itself.

In general, there are various ways to prevent the machine from becoming
dangerous, but each such restriction also limits the positive utility of the machine
in some way.

There are many correspondences between the operator–machine relation-
ship and that of an administrator and his subordinate. The relationship of a
president to any of his administrative organizations or that between the people
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of a country and the president, are only two examples in which control of an
administrator by a subordinate is a real danger.

The problem of the ambitious subordinate is one that has been faced by
almost every competent administrator. The formalization of the problem of
the man–machine relationship can probably yield some insight into the human-
human system, though, of course, solutions in one system usually cannot be
directly applied to the other.

One means of avoiding inadvertent machine control is to have several some-
what different machines work on the same problem. If the machines are suffi-
ciently different in training history or in initial design, and there is little or no
information transfer between them, there is much less danger of the machines
controlling the operator.

If information transfer between the machines is possible, most of the advan-
tage to the operator is lost. Coupled machines can then act as a single unit.
The situation is initially analogous to a country with free competition between
various firms. Information transfer between machines results in the analog of a
cartel, in which the merging firms gain at the loss of the consumer.

Another correspondence is in a system of spies for gathering information.
It is usually advisable to have several systems of spies working on the same
problem that are informationally isolated from one another. By coordinating
the spy systems of a government, there may be a great apparent savings in
administrative costs and in reducing apparently needless duplication of work,
but the reliability obtained through such a low redundancy system is vastly
decreased, and the danger of the spy system controlling its client is greatly
increased.

7 Dolphin Talk.

Communication between humans and non–humans has always been very poor.
Until recently, it was felt that the fault was largely with the non–humans — that
they were not intelligent enough to use and understand anything as complex as
human language.

However, recent observation of dolphins, and the general class of toothed
whales, suggests that they may be far more clever than any other animal that
man has known. Since they are able to hear and produce human–like sounds,
attempts have been made to teach them human language. For the most part,
these training attempts have been patterned after the situations in which it is
felt that adult or infant humans acquire and learn to use languages.

My own view of the language–learning process has been to regard it as a
complex induction process. We can, at present, teach many types of animals to
respond to words and phrases in various ways. This amounts to the simplest
kind of rote learning imaginable — the pairing of members of a set of stimuli with
members of a set of responses. Whether the stimuli are blinking lights of various

11



colors, sounds of various pitches, or words of different phonetic sequences, is not
very important. The ability to learn the response set is largely dependent upon
little more than the animal’s ability to discriminate between the various stimuli.
If there are ten different stimuli, the animal must memorize a language with ten
sentences in it.

When we consider the problem of language learning, we usually have in mind
more complex languages — languages with far more sentences in them. In most
human languages, the number of sentences is practically infinite. Furthermore,
a person knowing such a language can usually understand sentences that he
has never heard before. He can do this because his language learning has not
consisted of the memorization of the meanings of sentences, but in the learning of
meanings of words and how to determine the meanings of various combinations
of words.

Essentially, this language–learning process is an example of the most complex
form of induction possible. The subject is given sentences in various situations
related to those sentences. From this training sequence, he is to induce the re-
lationship between the sentences and the situations. To test his having learned
this, we present him with a sentence that he has never heard before, that con-
tains, as far as we can tell, the same word and grammar components as those
in his training sequence.

An essential test of complex language acquisition is the subject’s understand-
ing of sentences that he has never heard before. Phrasing this another way, we
ask, to what extent is the animal able to take a complex stimulus input and
divide (“factor”) it into meaning components, so that it will respond suitably
when these meaning components are recombined in new ways?

The language–learning program that I propose begins by attempting to teach
meanings of words by presenting them in sequences only — then seeing if the
animal can understand sequences of the same words in slightly different combi-
nations. For example, say we have three objects, A, B, and C. With them, we
associate sounds SA, SB , and SC , respectively. We also have three boxes, 1, 2,
and 3 associated with sounds S1, S2, and S3 respectively. We then teach the
animal to respond to the sound sequence SAS2 by his placing the object A in
box 2. Similarly, we teach the animal the proper responses to:

SAS3, SBS1, SBS3, SCS2.

After he has learned these six responses, we present him with:

SAS1, SBS2 and SCS3

.
A proper response or even unusually rapid learning of these new responses

would indicate an essentially higher order induction capability than that needed
for rote learning.
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Any success in this initial experimentation should be followed by training
involving different relationships between pairs of words and eventually triplets
of words.

An initial success will be more likely if the sets of words used represent the
kinds of meaning components that are familiar to the animal. A good trainer
should be able to suggest suitable sets of meaning components.

For dolphins, the training may be more effective if the symbol sounds are
presented simultaneously rather than sequentially.

In the design of languages for inter–species communication, it is well to know
what concepts are easily communicated within the species. We can determine
these to some extent in the following sort of experiment:

Al and Bob are two animals who are friends and of the same species. We
teach Al to respond to stimuli SA, SB and SC with responses RA, RB and RC

respectively. We then excite stimulus SA, but in a way such that Al cannot
perceive it. The excitation, however, is such that Bob can perceive SA. Can Al
ask Bob what the stimulus is and can Bob tell him? Here we must try various
stimuli types in attempts to find some that are representable in the intra–species
language.

If we discover such a stimulus set, we can use it to devise trial meaning
components for a language between species and test them as in the previously
proposed experiments.
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