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Abstract. These are a few notes about some of Ray Solomonoff’s foun-
dational work in algorithmic probability, focussing on the universal prior
and conceptual jump size, including a few illustrations of how he thought.
His induction theory gives a way to compare the likelihood of different
theories describing observations. He used Bayes’ rule of causation to dis-
card theories inconsistent with the observations. Can we find good the-
ories? Lsearch may give a way to search and the conceptual jump size a
measure for this.

1 Understanding and Learning

1. Ray taking apart a scooter. 2. Working on the house he built. 3. An
“experiment” (Ray is on the right).

The first thing Ray did when he acquired something was to take it apart.
Here’s a picture of Ray taking apart a scooter he found in the trash. He took
many notes. They were like a program, so that the scooter could be remade.
Ray built a house from descriptions in a book, like a recipe. What was made in
Ray’s lab in the cellar?

Ray [Sol97] wrote:

My earliest contact with modern scientific philosophy may have been
P.W. Bridgman’s [Bri27] concept of “operational definition”. An opera-
tional definition of anything is a precise sequence of physical operations
that enable one to either construct it or identify it with certainty.
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. . . When one can’t make an operational definition of something, this
is usually an indication of poor understanding of it. . . . Attempts to op-
erationalize definitions can be guides to discovery. I’ve found this idea
to be an invaluable tool in telling me whether or not I really understand
something.

To quantify information Solomonoff’s theory uses operational definitions by
means of computer programs.

A new way to measure things may herald a new era in math or science. It can
bring new ways to see, and new tools. A new way to measure information content
of a string happened in 1960-65 when Ray Solomonoff (60, 64) [Sol60b,Sol64], An-
drey Kolmogorov (65) [Kol65] and Gregory Chaitin (66) [Cha66] independently
published a new way to measure the complexity of a sequence of observations by
the size of the minimal computer program that could produce it. Kolmogorov
and Chaitin were interested in the descriptional complexity of a sequence: to
quantify the information, and use that to define randomness, while Ray was
interested in the prediction aspects of the sequence, especially to compare how
well different theories (expressed as computer programs) could predict the next
members of a sequence.

Prediction and learning are closely related. The heart of science is prediction.1

I think Ray thought the length and number of explanations that produced
or described a sequence of observations was related to learning. He expressed
these explanations as computer programs. We don’t yet know if this new way to
measure will be important, but there is a good possibility.

It implies that understanding and learning are not weird things trapped in
the brain’s black box; they may be weird, but they will be understood.

Ray used a method called algorithmic probability (AP) to measure theories.
He used a method of searching for theories called Lsearch which is related to a
measure he called conceptual jump size (CJS).

This paper will discuss a few of Solomonoff’s ideas about some concepts of
AP, Lsearch and CJS. He had delight in creating something new, a joy that is
there for all who search for new ideas. Hopefully his ideas will contribute to his
lifelong interest of achieving a thinking machine able to solve hard problems in
all domains.

1 Earlier Ray wondered [Sol03]why Kolmogorov wasn’t interested in using these con-
cepts for inductive inference — to define empirical probability.“Leonid Levin sug-
gested that inductive inference was at that time, not actually a “mathematical”
problem. . . It may have been that in 1965 there was no really good definition of in-
duction and certainly no general criterion for how good an inductive system was.”
In that paper Ray also points out the difference in meaning of “Universal” between
the universal distribution on one Turing Machine and dependence of the universal
distribution on choice of machine.
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2 Algorithmic Probability and The Suite of Theories

In a letter in 2011, Marcus Hutter wrote: “Ray Solomonoff’s universal probability
distribution M(x) is defined as the probability that the output of a universal
monotone Turing machine U starts with string x when provided with fair coin
flips on the input tape. Despite this simple definition, it has truly remarkable
properties, and constitutes a universal solution of the induction problem.”(See
also [RH11])

To predict the continuation of a string, x, AP gives weights to the theories,
expressed as computer programs, that could produce or describe it:

PM (x) =

∞∑
i=1

2−|si(x)| (1)

It measures the likelihood of each unique, randomly created program si input
into Machine M to produce a chosen sequence, x; this means all the different
ways that x could be replicated. Then it adds these probabilities together. The
resulting value is P probability of the sequence. It is the likelihood of the sequence
x occurring at all.

The shortest program in this distribution is intuitively like the idea of Oc-
cam’s Razor: the simplest program is the best. Using all the individual programs
is intuitively like an idea of Epicurus: keep all of the theories. But the simpler
theories are more likely. It weights each theory by a measure based on the like-
lihood of that theory.

The Universal Prior by its sum defines the probability of a sequence, and by
using the weight of individual programs gives a figure of merit to each program
(cause or description – like an operational definition) that could produce the
sequence [Sol64]. He uses Bayes’ rule to predict the continuation of the sequence.

The simplest explanation for an event is often the best one. But something
is also more likely to happen if there are many possible causes. Some researchers
use AP to choose the single shortest program for prediction [WD99]. Ray thought
that keeping as many programs as possible is best for some situations [Sol84]:

Why not use the single “best” theory? The best is via one criterion;
a) i.e. min a priori of theory x (pr [probability] of corpus with right
theory); b) however another best is with respect to b) minimum expected
prediction error. For best in b) we use weights of various theories, using
weights of a)

Any new hypothesis can be roughly measured and added to the group of
hypotheses; in a finite world, we don’t have to include every possible hypothesis
from an infinite amount.
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3 Using Bayes’ rule

Bayes’ rule is used in many statistical applications to sort out frequencies of
events. If the events are called causes then Bayes’ rule becomes “Bayes’ rule for
the probability of causes” [Fel50].

Bayes’ rule may be the optimal method of predicting future observations
based on current beliefs and evidence. A value of AP is that it provides the
necessary prior, the universal prior, that contains the complete universe of the-
ories used for prediction. When little or no prior information is available, this
technique enables us to construct a default prior based on the language used to
describe the data.

The shortest input computer programs describing the sequence x are more
likely than the longer ones, but there will always be at least one theory that can
describe any finite sequence of observations: this sequence simply predicts every
observation one by one, which as a program, translates to “print < x >” for any
given sequence x. Thus none of the sequences will have zero probability.

Ray [Sol99] wrote: “If there is any describable regularity in a corpus of data,
this technique will find the regularity using a relatively small amount of data. –
While the exact a priori probability is mathematically incomputable, it is easy to
derive approximations to it. An important outgrowth of this research has been
the insight it has given into the necessary trade-offs between a priori information,
sample size, precision of probability estimates and computation cost.”.

In early years probability was scorned in the AI community. Nowdays, in
Artificial Intelligence (AI), Bayes’ rule is usually used for frequencies, – sorting
out masses of data; it gives good statistical values. The frequency version deals
with a search space like a Greek urn with events that are variously colored balls.
Bayes’ rule helps sort the events into groups that may be within other groups,
relating them to a common base, so you can add ratios together properly.

I think Ray changed the Greek urn into a Turing urn filled with events that
are hypotheses. In this urn are explanations, not objects. The explanations may
be different, but may begin the same way.

In a letter by Alex Solomonoff [Sol16b], Alex remembers Ray telling him that
perhaps all probability is causal, not frequentist – a coin has a 50% chance of
coming up heads only because we are ignorant of the details of how it is flipped.
Also Alex notes that in Solomonoff’s theory, the events or observations being
predicted by AP are deterministic, not random. The Universal prior implies
that the universe has structure and can be described by rules, not derived from
frequencies of events.

4 Incomputability

AP is (almost) as “computable” as the value of π with successive approximations
that are guaranteed to converge to the right value. But unlike π, we can not know
how large the error in each approximation can be.
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Ray [Sol97] wrote, “The question of the “validity” of any inductive infer-
ence methods is a difficult one. You cannot prove that any proposed inductive
inference method is “correct.”, only that one is “incorrect” by proving it to be
internally inconsistent, or showing that it gives results that are grossly at odds
with our intuitive evaluation.”

But Ray often said about incomputibility: “It’s not a bug, it’s a feature!”
Systems that are computable cannot be complete [Leg06]. Incomputability is
because some algorithms can never be evaluated because it would take too long.
But these programs will be recognized as possible solutions. On the other hand,
any computable system is incomplete: there will always be regularities outside
system’s search space which will never be acknowledged or considered, even in an
infinite amount of time. Computable prediction models hide this fact by ignoring
such descriptions,

5 Metamorphoses of a Theory

1. A Sultan in a turban. 2. Ray in a Turban 3. Mimi the cat in her house.

The second thing Ray did when he acquired something was to use it in a
way for which it wasn’t intended. When Ray discovered a new use for Mimi the
cat’s house, he described the use of Mimi’s house in a new way; a container with
an opening, which can be used in different ways. The new encompassing theory
leads to greater flexibility, more uses for Mimi’s (who wasn’t all that happy
about this!) house.

A different view may help making or attempting predictions. One day Ray
turned the graph of the Dow Jones index upside down. It looked different, which
indicated that there was information there. Another day he got my brother to
try “playing” several indices on his viola.

In general, a new description is evidence of a kind of learning. Ray uses a
method called Lsearch to look for descriptions and a measure called conceptual
Jump Size to quantify steps of this learning.
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6 Lsearch

Lsearch is a computable way to build simple theories that match the observa-
tions. Ray [Sol97] explained it in a biographical article:

“In the present context, any “concept” can be represented by string of com-
puter instructions – a “macro”. They are combined by concatenation.

Given a machine, M , that maps finite strings onto finite strings. Given the
finite string, x. How can we find in minimal time, a string, p, such thatM(p) = x?

Suppose there is an algorithm, A, that can examine M and x, then print out
p within time T . Levin had a search procedure that, without knowing A, could
do the same thing that A did, but in no more time than CT2L. Here, L is the
length of the shortest description of A, using a suitable reference machine, and
C is a measure of how much slower the reference machine is than a machine that
implements A directly. An alternative form of this cost of the search is CT/P .
Here P = 2−L is approximately the a priori probability of the algorithm, A.

The parameter T/P plays a critical role in searches of all kinds. In designing
sequences of problems to train an induction machine the T/P value of a partic-
ular problem at a particular point in the training of the machine gives an upper
bound on how long it will take the machine to solve the problem. In analogy
with human problem solving, I christened T/P “Conceptual Jump Size”.

Before I met Levin, I had been using T/P as a rough estimate of the cost of
a search, but I had no proof that it was achievable. . . . Sometime later, I showed
that Levin’s search procedure (which I will henceforth denote by “Lsearch”) is
very close to optimum if the search is a “Blind Search””

Lsearch takes the first program to match observations, so it is close to the
spirit of Kolmogorov complexity. Lsearch hasn’t been applied very much for real
problem solving. The measure gives an upper bound to how much time it will
take, but it does not tell about error size, and the bound though finite can be
very large. Perhaps Schmidhuber [Sch94] was the first to run a computer program
using a very simple Lsearch to solve a problem. Ray thought Lsearch could be
used.

7 Conceptual Jump Size and Descriptions

CJS is related to the difference of Kolmogorov complexity of a growing string of
observations, where the computation time to find a new best description is taken
into account. In schools, most often, problems are given that are either right or
wrong. But in the real world, plans that first seemed right often fail when new
data comes in: so we have Plan B and Plan C, which in Ray’s work, may be
represented by the members of the suite of programs. Conceptual jump size may
give a way to think about questions like this. For example if the sequence is
“water water water. . . ”, then the shortest code is likely “repeat water forever”.
However, if the sequence is “water water water. . . chicken chicken. . . [some dif-
ferential equation]. . . [a game of chess]. . . ”, then the simplest description may
become more and more complicated as the sequence progresses. Each time there
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is a lack of regularity between the new observations and the past ones, there
is a jump of complexity of the description, resulting in a jump of (decreasing)
probability of the sequence. The conceptual jump size is a computable way to
measure how much more complex the sequence becomes.

8 Can the Search be practical?

“Nothing is always absolutely so” (T. Sturgeon, July 57): was Ray’s comment
on the cover of his first 1960 Inductive Inference report [Sol60a].

A big problem is that a search for better theories may take more time than
can ever be available. Yet people find new theories all the time. If people can do
it, so can AI. Can CJS be brought into reasonable size?

Ray had other ideas about Lsearch; for example: improving it by altering the
next cycle of Ti, so that the same codes wouldn’t be found a second time. Much
time is wasted if Lsearch doesn’t remember what it did in earlier cycles.

In another note, a question. . . “The question about if I’ve spent time T0
seconds on compression without more in compression what is probability of
finding more compression in next t seconds. Is it t/t0 or 1−(t/(epsilont0)).[Sol84]”

Among the notes, a small graph hints toward another idea:

Ray was interested in Lcost as a form of Lsearch which incorporated the
cost of computer activity; so there would be penalty for nonproductive activity
caused by a successful code. A similar measure of learning is action. The use of
dollar cost (in those days equipment cost x rental time) is a good cost measure
for most AI type calculations. “Action is approximately equal to equipment cost
X time”.[Sol81]

Ray also developed the idea of RLP (Resource Limited Prediction) to deal
with four basic factors: They are: 1.) The prediction itself. 2.) The reliability of
that prediction. 3.) The sample size. 4.) Computation cost.[Sol81]

Here are some more ideas by Alex Solomonoff [Sol16a]:

Suppose there are two codes, (with different continuations) that both repro-
duce the observed data. Both are the same length, and both are the shortest
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code in their respective cloud of functionally equivalent codes.2 Then the code
with the bigger, denser cloud will be more probable.

Training sequences were a method Ray Solomonoff suggested for leading the
Lsearch to the destination in steps short enough to be practical. The idea of a
training sequence suggests Levin search can be taught things the trainer already
knows. But how would it learn things that no-one knows? You would run short
Levin searches on every bit of data you could find. Occasionally you might find a
regularity. Those few short codes, and that data would be your training sequence.
You wouldn’t require that the short code reproduce the entire string perfectly.
If it got “enough” of it right, you would call it a success. But this requires that a
large corpus of data be divided up into bite-sized chunks, and there are a million
ways to do this. Even if there were a “natural” way of splitting it, how would the
machine find it? More undirected Lsearch. This would be a very slow process.

In the most basic Levin search, the CPU fraction assigned to a code is de-
termined solely by the length of the code.

1. If a running code has not finished printing out x, and has not printed out a
bit in a long time, it is probably in an infinite loop, will never print out another
bit, so we should reduce its CPU fraction.

2. If a running code has correctly printed out most of the bits of x, it is more
likely to output all of the bits correctly than a code that has only printed out a
few bits. So we should increase the CPU fraction of a code every time it prints
out a correct bit.

9 Agents

Agents are also being developed to speed up the search.

Marcus Hutter’s general concept of an agent is one that, in the scientific
world, can make experiments to get more meaningful. observations faster than
waiting for the universe to provide them. Laurent Orseau and Tor Lattimore
and Marcus Hutter [OLH13] developed a Bayesian knowledge-seeking agent.

These are a few examples of ways to shorten CJS size.

10 Fun with Unconscious Jumps

Ray asked how people do learning jumps – mostly by unconscious methods.

Pac-Man interested him, because a person plays and plays and does maybe
a bit better, and then suddenly does much better. Ray believed that was the
unconscious making a good jump to a new method of play. Nobody yet knows
how the jump occurs but the action shows that it did occur. It remains in the

2 Two codes are functionally equivalent if all the bits they ever output are identical. If
two codes compute all the same output bits, how they generate those bits won’t make
any difference to any prediction or probability. Except for the matter of computing
speed, in a time limited code search. . .
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players unconscious as a tool, and using it, may lead on to the next level. Unless
a method is remembered it isn’t learned.

Jokes are a mental kind of sports; sports are a fun way to make people better
at hunting and other physical survival skills. Finding punchlines to jokes make
people better at discovering interesting theories — a mental survival skill —
they are a fun way to enlarge our ability to jump from one theory to another:
there is a normal description of something, and then in the joke we get a nifty
different description: a ‘funny’ description that is just right, and the reward is
that we ‘get it!’ and laugh. So in this way we may learn more from jokes that
encourage our ability to leap to better theories, than from the school homework
that has Yes or No answers.

Many theories; simple theories: what kind of probability has the Universe?

11 On the back porch just beyond the Universe

Kolmogorov and Solomonoff were sitting admiring the view when Kolmogorov
brought out a string of 21000 bits and set it on the wicker table next to his Kvas.
He took out his Universal Turing Rover laptop and in 10 seconds found one
program of 100 bits that described his string.

Solomonoff set down his root beer, and brought out a string of 21000 bits and
set it on the table. He took out his Universal Turing Handmade computer3 and
in 10 seconds found 250 programs that described it, each program of 110 bits.

1.,2. Ray’s handmade computer 3. Looking into space during fireworks

Andrey said, “My string seems least random because my program is only 100
bits, while yours are 110 bits.” Ray said, “Mine seems so because your single
program of 100 bits has prior probability of 2−100, while my 250 programs give
a combined probability of 250 x 2−110 which is 2−60”

Solomonoff turned to Kolmogorov, and added, “I use shortest codes to mea-
sure my hypotheses and in Lsearch.”

In our finite world in short periods of time, multiple codes may have similar
weights. But what about a longer and longer string as seen from the back porch?

3 Of course they both had the same Stallman [free] v. 4.3 instruction set architecture
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Ray [Sol64] said, Hmm, “...if T is a very long string, . . .Pi(T ) normally de-
creases exponentially as T increases in length. Also, if Qi and Qj are two different
probability evaluation measures (PEM’s) and Qi is “better” than Qj , then usu-
ally Pi(T )/Pj(T ) increases exponentially as T increases in length. Of greater
import, however, . . . the relative weight of Qi and Qj , increases to arbitrarily
large values for long enough T ’s. This suggests that for very long T , . . . [AP]
. . . gives almost all of the weight to the single “best” PEM.”.

Sitting on the back porch, just beyond the Universe, Kolmogorov turned to
Solomonoff.

He said “Almost?!?”
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