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The problem of finding the “weak connectivity’’ of a random net is reduced
to one involving a Markov process. This provides a mathematically exact treat-
ment of the problem which had previously been treated by an approximation,
whose justification was not rigorous. The exact method allows in principle not
only the calculation of the “weak connectivity,”” but also of the ‘‘strong connectiv-
ity,”” and, in general, the probability that from a randomly selected neuron in
the net there exist paths to a specified number of neurons. The computations
become exceedingly involved for large nets.

A previous paper (Solomonoff and Ra;;oport, 1951) dealt with an ap-

_ proximate method for determining the “weak connectivity’” of random

nets. The reader is referred to that paper for the definitions of terms and
the statement of the problem. :

In this paper we will indicate a mathematically exact method for
calculating the probability that from an arbitrarily selected neuron in
a random net paths exist to any specified number of neurons. The ex-
pected number of such neurons is then the “weak connectivity.” On the
other hand, if the specified number is the largest possible, the associated
probability is the ‘“‘strong connectivity.”

We follow the “tracing procedure” described in the previous paper.
Let z(¢) represent the actual number of neurons contacted in all by the
tth tracing inclusive, and let y(¢) be the number of neurons newly con-
tacted by the ¢th tracing. Then

(1) =y 0. (1)

Let p(x, £) be the probability that there were x neurons in all contacted
by the #th tracing. Then p(x, £) depends not only upon the possible values
of x on the (¢ — 1)th tracing, but also upon those values on the (¢t — 2)th
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tracing, since only the newly contacted neurons of the (# — 1)th tracing
are traced on the #th. If x(t — 1) = {and x(t — 2) = 4, then

p(x,8) =r,—;laG—7),1]. (2)

Here 74(s, m) is the probability that k neurons will be newly contacted,
when there are s axones being traced and there have been m neurons al-
ready contacted. The equation

ri(s, m) =(N;’”> N—si(’;)(m+k—j>s (3)

was derived by A. Rapoport (1951). This can be more compactly written
in the notation of finite differences as

— k s
s my =(V M)A 4)

where A¥(m*) is given by the following iteration formula:
Alm®) = (m+1)*—m=,

(5)
A*(m) = A (m+ 1) ] — A1 [me].

Consider now an abstract system with N2 - 1 possible states. We can
designate each state by an ordered pair (¢, 7), where 7 and 7 range inde-
pendently from 1 to NV, and an additional (initial) pair (0, 1). Furthermore,
suppose that if the system is in state (7, /) at time £, then the probability
that it will be in state (%, I) at time ¢ 4 1 is independent of ¢ and equals
Pl 7), (&, D]. Hence if we designate by D[(7, 7), {} the probability density
distribution over all the possible states at time £, this distribution at time
¢t 4+ 1 will be given by

DIk, 1), t+11= D p1G, /), (k DIDLG, /), 1]. (6)
(i D

This equation is obtained by summing over all possible ways in which the
system can make transitions from states (7, j) to a state (k, [). The p’s are,
of course, the transition probabilities. The D’s are probability density dis-
tributions of the N2 + 1 possible states. We shall refer to the D’s simply

as the distribution vectors.
Tt is now clear that we are dealing with a process which can be described
in terms of a vector-matrix equation, in fact, a Markov process. The
vectors have N? 4+ 1 components and the matrices N4+ 2N% 4 1 com-
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ponents. If we designate our transition matrix by P, equation (6) can be
immediately generalized to

D[t4n] =PD(1). (7)

This follows by a simple induction on 7.

In terms of our problem we then have the following interpretation.
Let 2(¢) be the total number of neurons contacted by the (¢ — 1)th tracing
and j(¢) the total number contacted by the ith tracing. Then #[(z, 7),
(%, 1)] is the probability of the following combination of events:

- 1. At ¢t — 1, there were 7 neurons contacted in all.
2. At ¢, there were § neurons contacted in all.
3. At ¢, there were £ neurons contacted in all.
4, At ¢+ 1, there will be [ neurons contacted in all.

Evidently 2. and 3. are either identical or incompatible. They were
stated separately only to give meaning to the quadruple index (4, 7, %, 1)
in terms of which the vector-matrix formulation was obtained. In view of
the meaning of our indices, we see that p[(7, 7), (k)] = O unless i < j =
k £ I, so that our transition matrix P has non-zero elements at most at
those loci [(7, /), (7, D], where i < j < 1.

Now let an initial condition be known, e.g., at # = 1 exactly one neuron
is contacted. Then the initial distribution vector is (1, 0, 0. ..) with the
unity representing the certainty of the initial state (0, 1) at ¢ = 1. The
elements of the transition matrix are given by

A\ AG=D ] jati=H)]

216, 9,601 = (5 77 ) gt (8)

This is essentially the expression (4) with

k=] — 7, the number of newly-contacted neurons at ¢+ 1 ;
m = j , the number of neurons in all contacted at ¢ ;

s=a (j—1), the number of axones to be traced at ¢ .

To find the final distribution vector at ¢ = » 4 1, we multiply the
initial distribution vector (1, 0...) by the #th power of the transition
matrix, Note that if on any tracing no new neurons are contacted, there
will be no axones to trace on any subsequent tracing, and, therefore, the
total number of neurons contacted will remain stationary. But there are
exactly N — 1 uncontacted neurons at / = 1. Hence there can be at most
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N — 1 tracings, and we can set # = N — 1. The distribution vectors will
remain unchanged for { > N.

Another way of looking at it is by noting that for { = N, the distribu-
tion vector is the sum of eigenvectors, each of eigenvalue unity. All the
components of these eigenvectors vanish, except one of the (7, 7) com-
ponents. There are exactly V such eigenvectors, one for each i.

It appears, therefore, that the final distribution vector D [(7, j), N]
will have non-zero components only where 7 = 4. Each of these compo-
nents with index (4, ) will represent the probability that there exist paths
from an arbitrary neuron to exactly 7 other neurons. In particular, the
component (N, N) is the “strong connectivity” of the net, which, as will
be recalled, was defined in the previous paper as the probability that
paths exist from an arbitrary neuron to all/ the other neurons of the net.

To find the weak connectivity v, we take the expected value of /N
at ¢ = N, so that

7=%§;iD[(i,i),N]- (9)

In the following numerical example V = 4, ¢ = 2. Qur transition ma-
trix, computed from (4), is shown in Table I.

TABLE 1

0.1 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4 4.1 4.2 4.3 4.4
0.1, 0|10]| O 0 0 o0 0{ 0y 0|l Ol O] O] O] O] 0 0] O
1.11/16) 1| O 0 0,0 00| O] 6010} 0| 0| 0] 0} 0} O
1.2 9/16/ 0| 0O 0 oy 0f 0}y O O] O O} O) O) OJ O] O} O
1.3 6/16{ 0 | O 0 0| 0| 0 0y O O O O| O] O| O} O] O
1.4/ 0]0] O 0 0| 0; 0 O} 0} O] 0| O} O} O| O| Of O
2,14 0,07 0 0 0 0] 6{ 0 0y 01 O O Of O O O O
2.2 0]02/8 0 0y 0| 1} 0 0| 0} 0} 0| O] OF 07 0} O
2.3 01015/8 0 0/ 0/ 0] 0} O] ) O O] O0J-0] O] O} O
247 01011/8 0 0, 0, 0| 0] 0} Ol O] O Oj 0| OO O] O
3.1 010 O 0 0| 06 0y 0}y 06| O Oy O] G| O O} O} O
3.2 0{0} O 0 0y 0y O Oy Of O G Oy O} Of O}-0/] O
3.3 00| 0 8/25/0, 0| 09/t6f 0| 0 O| 1| 0| O} 0} O] O
3.4 0]0) 0/175/256/0| O} 0|7/16|] O] O| O] 0} 0}y O O O| ©
4.1, 0,0, O 0 0y 0] 0y O O O} O O O] Of Oy O] O
42| 00| O 0 0| 0y O O} O}y 6| 0| O} Ol O| O] O O
43| 0{0{ 0O 0 0 0, 0y 0/ 0, 0y 0] 0 0)] 0| 0! 0] O
441 00} O 0 10| 0| 0}y 1, 0[O0} 0] 1] 0] 0| 0] 1

The initial distribution vector of 17 components is (1, 0, 0...). At
= 4 the (final) distribution vector is

D(4) = (0,.0625,0,....1407,....316,... 481).  (10)
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The non-zero components of this vector give'the probabilities that there
exist paths from an arbitrary neuron to 1, 2, 3, and 4 neurons respectively.
In particular, the last value, .481, is the strong connectivity of the random
net with total population 4 and axone density 2.

The weak connectivity is

1(1X.06254+2X.1407+3X.316+4+4X.481) =.804. (1i1)

The value of v given by the approximate equation (cf. Solomonoff and
Rapoport, loc. cit.),
7=1_6—a7; (12)

turns out to be 0.8, a good approximation for this case.
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