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Abstract

I will first discuss current work in machine learning — in particular,
feedforeword Artificial Neural Nets (ANN), Boolean Belief Nets (BBN),
Support Vector Machines (SVM), Radial Basis Functions (RBF) and Pre-
diction by Partial Matching (PPM). While they work quite well for the
types of problems for which they have been designed, they do not use
recursion at all and this severely limits their power.

Among techniques employing recursion, Recurrent Neural Nets, Con-
text Free Grammar Discovery, Genetic Algorithms, and Genetic Program-
ming have been prominent.

I will describe the Universal Distribution, a method of induction that
is guaranteed to discover any describable regularities in a body of data,
using a relatively small sample of the data. While the incomputability of
this distribution has sharply limited its adoption by the machine learning
community, I will show that paradoxically, this incomputability imposes
no limitation at all on its application to practical prediction.

My recent work has centered mainly on two systems for machine learn-
ing. The first might be called ” The Baby Machine” We start out with the
machine having little problem specific knowledge, but a very good learning
algorithm. At first we give it very simple problems. It uses its solutions
to these problems to devise a probability distribution over function space
to help search for solutions to harder problems. We give it harder prob-
lems and it updates its probability distribution on their solutions. This
continues recursively, solving more and more difficult problems.

The task of writing a suitable training sequence has been made much
easier by Moore’s Law, which gives us enough computer speed to enable
large conceptual jumps between problems in the sequence.

*Revision of lecture given at AIQ50, The Dartmouth Artificial Intelligence Confer-
ence, Dartmouth, N.H. July 13-15, 2006.



A more difficult task is that of updating the probability distribution
when new problems are solved. I will be using some of the current tech-
niques for machine learning in this area: PPM and Grammar Discovery
are particularly promising. It is my impression that the probability models
need not be recursive for the initial learning. Later the system can, with
suitable training, work on the problem of updating its own probability
distribution, using fully recursive models.

Genetic Programming is my second area of recent research. Koza’s
Genetic Programming system has been able to solve many difficult prob-
lems of very varied kinds. The system itself is extremely slow, however —
it has taken a cluster of 1000 Pentiums about a month to solve some of the
more difficult problems. I have found a large number of modifications of
the system that I expect will dramatically improve its speed and broaden
the scope of problems it can solve.

The Future — The cost halving constant in Moore’s law is now about
18 months. When A. I. pays a significant role in the reduction of this time
constant, we begin to move toward the singularity. At the present time
I believe we have a good enough understanding of machine learning, for
this to take place. While I hesitate to guess as to just when the singularity
will occur, I would be much surprised if it took as much as 20 years. As
for the next 50 years of A.L., I feel that predicting what will happen after
this singularity is much like guessing how the universe was before the Big
Bang — It’s a real discontinuity!

Introduction

To start, I'd like to define the scope of my interest in A.I. I am not particularly
interested in simulating human behavior. I am interested in creating a machine
that can work very difficult problems much better and/or faster than humans
can — and this machine should be embodied in a technology to which Moore’s
Law applies. I would like it to give a better understanding of the relation of
quantum mechanics to general relativity. I would like it to discover cures for
cancer and AIDS. I would like it to find some very good high temperature
superconductors. I would not be disappointed if it were unable to pass itself off
as a rock star.

The Moore’s Law condition assures us that we can continue to improve the
device through affordable increases in computation capacity. My particular area
of interest is Machine Learning.

The problem of learning for humans: You have all of the information that
you’'ve gathered in your life, plus a certain amount you were born with. How
can you best use this information to make decisions?

The problem of probability: Given a certain body of data plus certain a
priori information — how do we best make predictions about the immediate
future?

It is seen that while the problem of learning is more general, learning and
probabilistic prediction are very close. The problem of machine learning is that



of getting good approximations to ideal probabilistic prediction. I will discuss
this goal in more detail in the section 2.

1 Models for Machine Learning: Recursive and
Nonrecursive.

In 1957 Frank Rosenblatt (Ros 57) wrote a report on Perceptrons that initiated
a burst of enthusiasm in an area of machine learning. About 12 years later,
Minsky and Papert (Min 69) wrote an analysis of Perceptrons — showing that
they couldn’t learn the logical “exclusive or” function. This resulted in a cutoff
of federal funds for neural nets for a while, but eventually it was found that
artificial neurons that were only slightly different from Perceptrons could do
“exclusive or” — and that they were universal in the sense of being able to
approximate any continuous function.

There was a new burst of enthusiasm, (and even funding) for neural nets
— marked to some extent in 1986 by Rumelhart and McClelland’s “Parallel
Distributed Processing” (Rum 86).

A second edition of Minsky and Papert’s book (Min 88) appeared in 1988
— pointing out that while neural nets might be able to distinguish between sets
that had an even (versus odd) number of elements, they needed a proportionally
larger number of neurons and larger data set to do so. They had the same
difficulty in dealing with the “greater than” function.

It is clear that in general, neural nets do very poorly in discriminations that
are best described recursively. While the nets can (through their particular kind
of universality) make such discriminations, they need a large number of neurons
and a very large data set to get much precision.

It is characteristic of smart induction models, that they get good predictions
with small amounts of data. Humans occasionally do what is called “One shot
learning.”

Another kind of problem in which neural nets do poorly: we have a data set
that consists of a few cycles of a sine wave plus a little noise. Neural nets can
extrapolate such data into the near future. They will not, however, recognize
that the data is, indeed, a sine wave plus noise — which would enable extrapo-
lation into the more distant future. If the data set were continued with a noisy
sine wave of another frequency and amplitude, the neural net would need lots
of data points and many more neurons to extrapolate it. A much more sophis-
ticated learner would realize that two sine waves only need six parameters to
characterize them — so it could extrapolate the sine waves with much higher
precision using fewer data points.

In general, to do economical prediction, we need (at least) facilities to make
recursive definitions.

It should be noted that it is not only feed forward neural nets that lack
these facilities. A large number of techniques used in current machine learning
are no better: i.e. Radial Basis Functions, Boolean Belief Nets, Support Vector



Machines, and Prediction by Partial Matching are a few: for certain areas of
prediction these techniques are fine. They work very well for the problems that
are normally given in machine learning contests.

With enough cubical Lego blocks one can make very beautiful buildings —
but with the addition of wheels, axles, motors, sensors and computers, one can
do much more!

To work really difficult problems, it is necessary to have all possible facilities
available. Recursion is one of these facilities. Later, I will discuss more advanced
tools.

Some machine learning techniques that get past the “Minsky-Papert recur-
sion barrier”: Recurrent Neural Nets, various Evolutionary Techniques, Min-
imum Description Length/Minimum Message Length, Algorithmic Probabil-
ity /Universal Distribution, Stochastic Grammars, Inductive Logic Program-
ming.

I will discuss some of these in subsequent sections.

2 The Universal Distribution

At the Dartmouth workshop, there was initially much interest in machine learn-
ing — but it was all theoretical, no one had programmed anything. Newell and
Simon’s “Logical Theorist” (New 57) was a program that solved problems in
logic using heuristics. It seemed like a real breakthrough, and most of the A.I.
work immediately following the workshop followed that lead.

I, however, continued work on Machine Learning and in 1957 wrote “An
Inductive Inference Machine”. It described the kind of system I've been working
on ever since. At the time, I felt I knew enough about the induction process to
be able to compute and optimize all aspects of the system. After a few years of
work, it became clear that I did not know enough. I began studying induction in
general and discovered probabilistic languages. This led in 1960 (Sol 60) to the
discovery of the Universal Distribution (also called Algorithmic Probability —
ALP). In a 1964 paper (Sol 64a), I described five methods of induction that I felt
were probably equivalent. All of them dealt with the extrapolation of a sequence
of binary symbols — all induction problems can be put into this form. What
we do is assign a probability to any finite binary sequence. We can then use
Bayes theorem to compute the probability of any particular continuation of any
particular sequence. The big problem is: how do we assign these probabilities
to strings? In the second method described in the paper, we have a universal
Turing machine with three tapes: a unidirectional input tape, a unidirectional
output tape, and a bidirectional work tape. If we feed it a tape with 0’s and 1’s
on it, the machine may print some 0’s and 1’s on the output — It could print
nothing at all or print a finite string and stop or it could print an infinite output
string, or it could go into an infinite computing loop with no printing at all.

Suppose we want to find the ALP of finite string . We feed random bits
into the machine. There is a certain probability that the output will be a string
that starts out with the string x. That is the Universal / Algorithmic Probability



of string x.
To compute the ALP of string x:

oo
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Here Py () is the universal probability of string = with respect to machine,
M.

There are many finite string inputs to M that will give an output that begins
with x. Say S;(z) is the i'” such string. We may call S;(z) “a description of
x”. |S;(x)| is the length in bits of the string, S;(x). *

2-1%:(@)l is the probability that the random input will be S;(z).

Py(z) is then the sum of the probabilities of all the ways that a string
beginning with z, could be generated.

This definition has some interesting properties:

First, it assigns high probabilities to strings with short descriptions — This
is in the spirit of Ockham’s razor. It is the converse of Huffman coding that
assigns short codes to high probability symbols.

Second, the value is somewhat independent of what universal machine is
used, because codes for one universal machine can always be obtained from
another universal machine by the addition of a finite sequence of translation
instructions.

A third property is incomputability: The equation for Ps(z) tells us to
find all strings that are “codes for z.” Because of the Halting problem, it is
impossible to tell whether certain strings are codes for x or not. While it is easy
to make approximations to Pps(z), the fact that it is incomputable has given
rise to the common misconception that ALP is little more than an interesting
theoretical model with no direct practical application. We will discuss this a bit
later.

I didn’t discover the fourth property until 1968 — eight years later and
didn’t publish a proof of this result until 1978 (Sol 78). It is the most important
property of all. Pys(x) is complete. This means that if there is any describable
regularity in a batch of data, Py; will find it, using a relatively small amount of
the data. At this time, it is the only induction method known to be complete.

More exactly: suppose p(z) is a probability distribution on finite binary
strings. For each x = x1, 29 ---x;, 1 gives a probability that the next bit, z; 1
will be 1:

(i1 = Uz, 22 7;)

From Pp; we can obtain a similar function
P(xiJrl = ].|.’IJ1,£L'2 tee {EZ)

Suppose we use u to generate a sequence, z, Monte Carlo-wise. u will assign
a probability to the i 4+ 1% bit based on all previous bits. Similarly, Py, will
assign a probability to the

IWe include in the set, S;(z) only “minimal codes for z” — i.e. codes, S; such that if we
delete the last bit of S;, the result is no longer a code for . These S; form a “prefix set”,
which assures us that the sum of all of the probabilities is < 1.



i+ 1" bit of z. If Py is a very good predictor, the probability values obtained
from g and from P,; will be very close, on the average, for long sequences.
What I proved was:

n
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The expected value of the sum of the squares of the differences between the
probabilities is bounded by about .35k. k is the minimum number of bits that
M, the reference machine, needs to describe p. If the function u is describable
by functions that are close to M’s primitive instruction set, then k will be small.
— But whether large or small, the squared error in probability must converge
faster than L (because ) L diverges).

Later research has shown this result to be very robust — we can use a
large, (non-binary) alphabet and/or use error functions that are different from
total square difference (Hut 02). The probability obtained can be normalized
or unnormalized (semi-measure)(Gac 97).

The function p to be “discovered” can be any describable function — prim-
itive recursive, total recursive, or partial recursive — even a large class of
incomputable functions.

The desirable aspects of ALP are quite clear. We know of no other model
of induction that is nearly as good.

But people immediately ask — what good is it if you can’t compute it?
Certainly a reasonable question. The answer is that for practical prediction we
don’t have to know ALP ezactly. Approximations to it are quite usable and the
closer an approximation is to ALP, the more likely it is to share ALP’s desirable
qualities

About the easiest kind of approximation to an incomputable number is mak-
ing rational approximations to v/2. We know that there is no rational number
whose square is 2, but we can get arbitrarily close approximations. We can
also compute an upper bound on the error of our approximation and for most
methods of successive approximation we are assured that the errors approach
zero. In the case of the universal distribution, the Bad News is that we cannot
compute useful upper bounds on approximation error — but the Good News is
that for few probability applications do we need this information.

On the other hand, for most applications an estimate of prediction error is
needed. Cross validation is usually possible, but for ALP it may be unneces-
sary. ALP itself has no underfitting or overfitting and may be able to use error
estimation techniques that are less wasteful of sample size.

Another reasonable question: Suppose you have a computable probability
method that seems to work adequately — why bother doing an approximation
to ALP? The answer is in ALP’s precision. No matter how good a computable
prediction method is, it is almost certain that there is an approximation to ALP



that is better. In the field of finance — market prediction, derivative evaluation,
insurance premium calculation, horse racing ..., it translates directly into finan-
cial gain. In other applications, it means better models, better understanding.
We get our cure for cancer or our high temperature superconductor in a few
years, rather than 50 years or never. Many A.l. problems are quite difficult and
we cannot afford to stray very far from using the very best tools available.

The approximation problem for the universal distribution is very similar to
that of approximating a solution to the travelling salesman problem, when the
number of cities is too large to enable an exact solution. When we make trial
paths, we always know the total length of each path — so we know whether one
trial is better than another. In approximations for the universal distribution,
we also always know when one approximation is better than another — and
we know how much better. In some cases, we can combine trials to obtain a
trial that is better than either of the component trials. In both TSP and ALP
approximation, we never know how far we are from the theoretically best.

The completeness property of ALP is closely associated with its incom-
putability. Any complete induction system cannot be computable. Conversely,
any computable induction system cannot be complete. For any computable in-
duction system, it is possible to construct data sequences for which that system
gives extremely poor probability values. The sum of the squared errors diverges
linearly in the sequence length.

Appendix 1 gives a simple construction of this kind.

We note that the incomputability of ALP makes such a construction impossi-
ble and its probability error always converges to zero for any finitely describable
sequence.

3 SA, The Scientist’s Assistant

We will describe recent developments in a system for machine learning that
we’ve been working on for some time (Sol 86, 89, 03a). It is meant to be a
“Scientist’s Assistant” of great power and versatility in many areas of science
and mathematics. It differs from other ambitious work in this area in that we
are not so much interested in knowledge itself, as we are in how it is acquired
— how machines may learn.

We will begin with the description of a simple kind of inductive inference
system. We are given a sequence of @, A pairs (questions and correct answers).
Then, given a new (Q, the system must give an appropriate answer. At first,
the problems will be mathematical questions in which there is only one correct
answer. The system tries to find an appropriate function F' so that for all
examples, Q;, A;; FI(Q;) = A;. We look for F' functions that have highest a priori
probabilities — that have “short descriptions”. In generating such functions,
we use compositions of primitive functions built into the system. The overall
language used is very close to Lisp, but there is a difference in how recursion
is represented. I am not yet certain as to whether this language will be a real
improvement over Lisp in the present system.



The @, A formalism for problems is fairly general. We can express many
kinds of information in that form. This makes it easy to put information into
the system.

At first, the problems will all be deterministic: only one correct solution for
each problem. Later we will allow several possible solutions to each problem
and the system must find probabilities for each of them.

The system starts with equal probability for all primitives, and finds solu-
tions to simple problems by combining them — roughly in order of probability
of each string of primitives. Because some trials can take a very long time —
occasionally not converging at all — we have to find some way to truncate tri-
als. We use a technique called Levin Search (Lsearch) in which a testing time
limit is assigned to a trial proportional to the a priori probability of that trial
— which is roughly negative exponential in the number of symbols in the trial
description. Short descriptions get lots of time, long descriptions, very little
time. Symbolically:

T,=P-T

P; is the a priori probability assigned to a trial

T; is the maximum time allowed for the trial.

T is a constant for each run. we start with T" set to the time for about five
instructions to be executed.

For a single run, we do all possible trials, using T; = P; - T: Since > P; < 1,
S T; < T: the total time for a run is < T'. If we don’t find an acceptable trial
in that run, we double T" and do a new run. These runs continue by doubling
T until we find an acceptable solution. It is easy to show that if P; is the
probability of an acceptable solution, and it takes T} time to generate and test
this solution, then the entire search time will be < 2T /P;.

After we have solved a fair number of simple problems this way, we no
longer assign equal probability to all primitives. We take the entire set of
problem solutions as a corpus for any of the (initially) non-recursive prediction
methods of Section 1: These methods can be used to assign probabilities to
various possible continuations of that corpus of problem solutions— creating
candidates for problem solutions. We end up with a much higher probability
being assigned to the correct solution, so T;/P; for that solution is much smaller,
and we take much less time to find it.

At first, we use non-recursive prediction methods, because they are usually
faster. Eventually, we will use the recursive methods mentioned in Section 1.
Probabilistic Grammar Discovery appears to be very promising. For a particular
problem, prediction techniques will be tried in expected T;/P; order— small
values first. The evaluation of this expected value is a kind of Metaprediction
problem.

I have not yet programmed much of SA. Schmidhuber, however, has pro-
grammed OOPS (Sch 02), which is similar to SA in many ways. OOPS has
been able to find a generally recursive solution for the “Tower of Hanoi” prob-
lem, after having solved a simpler problem with a recursive solution. Its training



sequence is not yet fully developed, and it has a weak update algorithm for the
probability distribution that guides its search, but these are deficiencies that
are readily repaired (if they have not already been dealt with).

I have described what I expect to be doing in the very near future. In
the more distant future, I will extend SA so that is able to solve more general
problems than the probabilistic @), A problems. It will have a large corpus of
problem-solving methods. It will learn to assign these methods to new problems
and will also learn to expand this corpus of problem-solving methods.

After it has worked a suitable training sequence of relevant problems, we
will give it the problem of updating the probability distribution that guides
its searches. As we pointed out, this probability distribution is initially gener-
ated by a nonrecursive prediction algorithm. By replacing it with an algorithm
that can hypothesize any “Turing expressible” function, we expect to get more
compression — to enable recognition of regularities of arbitrary structure.

4 Genetic Programming

Koza’s Genetic Programming (Koz 99)was the development of an idea of Cramer
(Cra 85). In normal Genetic Algorithms, a description of a candidate for solu-
tion to a problem will be a finite string. To produce new child candidate strings,
we “crossover” two parent strings by interchanging sections of the descriptions
of parents. For most description methods, this will often produce meaning-
less descriptions. Genetic Programming uses Lisp programs to define functions.
These programs are all “trees”. To create a child from two parent programs, we
interchange branches. This assures us that the resultant programs are mean-
ingful. The branches interchanged also have reasonable chances of being useful
subfunctions.

Kosa has continued to develop important improvements in the system —
such as automatically defining loops, recursions, and iterations to facilitate reuse
of code.

The programs have been very successful in solving some really difficult prob-
lems. When used for analog circuit design, it discovered many circuits that had
previously been patented. Its design for an analog operational amplifier would
normally take human engineers several months.

Recently one of its creations was awarded a patent by the US patent office.

While the performance of the program is certainly impressive, I will discuss
several serious deficiencies and suggestions on how they may be overcome.

Most notable is the computer resources needed to implement the program.
A cluster of 1000 Pentiums operated for about a month to obtain some of the
more interesting results.

To understand this difficulty, suppose we were to select a newborn child, and
train it for many years in engineering, then have it solve a difficult problem. To
solve a new engineering problem, we kill this engineer and start out with a
second newborn child as before, train it for many years, then give it a new



problem to solve. It would seem more efficient to use the first engineer to solve
the second problem, after having solved the first.

In genetic programming, we note that after a program has solved a problem,
it has a large population of functions that have been developed. This population
contains much potentially useful information — yet to apply it to a new problem
is not a trivial task.

Two possible approaches: In the first, we examine a new problem and de-
cide which problems of the past are most similar to it. We then use the final
populations of these historical problems, or sampled mixtures of them, as the
initial population for the new problem.

How do we find which past problems are related to the new problem? R.
Cilibrasi and P. Vitanyi (Cil 05) have been using text compression programs for
“clustering”. They work something like this: say z is one corpus of text strings
and y is another such corpus. We have text string, a. Does it “belong” in set x
or set y? To decide, we compress x and y and mixtures of x, y and a.

Say = compresses to c(x) bits. « and a compresses to c¢(z,a) bits.

Say y compresses to ¢(y) bits. y and a compresses to c(y,a) bits.

c(x,a)—c(x) is the additional information needed to code a, if x is known. If
a is very similar to other strings in x, this additional information will be small.
A measure of the relative probability that a belongs in x rather than y, will be

90— ((e(z,a)—c(x)) —(c(y,a)—c(y)))

We can use a technique of this sort to estimate which problems of the past
are most like the present new problem. We compare strings of symbols that
define each problem.

The efficacy of the method certainly depends on just what compression algo-
rithm is used — on what kinds of features it can recognize, what kind of regular-
ities it can discover. Surprisingly, relatively simple compression algorithms such
as PPM and BZIP2 (which is very similar to PPM) were remarkably successful
in generating clusters of strings that have proved to be of scientific value.

The second approach does not depend on the agility of a compression scheme:
instead, the goal of the genetic program is much modified.

Suppose a; is a string that describes our first problem. We then use Genetic
Programming to search for a program, f7 that is able to operate on a; to produce
an acceptable solution, by, i.e. f1(a;) = b;. After we have found such a f; we
go to the second problem, as. Starting with the population that solved a1, we
look for a new function f5 that can solve both a; and as — i.e. fa(a1) = by and
f2(a2) = b, the solution to the second problem.

For the third problem, we use as initial population, the population that
found fy. We then search for an f3 that will solve a1, as and ag.

f3 has to recognize as well as solve problems — a serious augmentation
of Koza’s system. We note that these are necessary requirements of human
scientists as well — it is not too much to expect of a potentially intelligent
machine.

For efficient learning, the problems given to the system would best be in
the form of a training sequence. They are designed to introduce various kinds
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of functions into the system most efficiently. They are similar to the training
sequences I'm using in my SA (Scientists Assistant) program.

In normal evolutionary programs, two kinds of modifications of population
members are used to create new candidates — the first is mutation — which
can be likened to forming a probability distribution from a sample of one. The
second technique, crossover, can be likened to using a sample of two. Using
larger samples — three, four, five... would enable even better candidates.

A technique has been described that uses the entire population as its sample,
to create a distribution over candidates. It uses a probabilistic grammar to
model the known population (Pel 00, Sha 03). Candidates can be selected
Monte Carlo-wise, using the induced probability distribution.

The speed of the search can be augmented by carefully selecting the sample
of the population that is used to generate the grammar. One way to do this: Say
we put the population in fitness order, so that x refers to the z** best member
of the population. One way to select a good subpopulation is to accept only
population members for which

xr < X

where x( defines our acceptance threshold. Another way, corresponding to
tournament selection, selects them with probability proportional to e=**. Here,
A corresponds to the size of the tournament. Larger A for large tournaments
and correspondingly large bias toward the elite (i.e. small x).

If we use the zg threshold method, the parameter x(, should be selected so
as to maximize

7= ag
p—=M;n

over the population. Here, M;, is the fitness function of the best candidate
found thus far. p and o are the observed mean and standard deviation of
fitness in the population being selected. Maximizing z makes it most likely that
a randomly generated child will have a fitness function less than M, , the best
thus far.

It is also possible to select A using the same criterion.

One common bottleneck in genetic programming can be excessive time to
compute the fitness function. In early work on circuit design, Koza used the
“SPICE” program to evaluate fitness of trials. It’s evaluation time was much
much larger than the time needed to select and generate the candidates.

In such a situation, it would be well to try to devise a fast approximate
fitness function to use on early generations.

If fitness evaluation time cannot be reduced, then more time should be spent
on selecting candidates. Ideally, about the same time should be spent on fitness
evaluation as on candidate selection/generation, presuming that the selection
time is wisely spent!

The best way to use the time is through better induction models. ALP is
designed to give better probability estimates as one spends more time. Other
induction systems may have similar characteristics.

I’'ve mentioned a few ways to improve genetic programs. Most of them have
been tried to some extent, but not all together. I think some of the improvements
would work quite synergistically!
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5 The Future of A.l

How far are we from serious A.I.? It is my impression that we are not very far.

Koza’s system is very good, and though it is quite slow, there are several
techniques for speeding it up and augmenting its functionality.

Another promising system is Schmidhuber’s OOPS (Sch 02). It uses Levin
search over a Turing complete set of instructions to find solutions to problems,
and has been able to find recursive solutions for them. Though it suffers from
various deficiencies, most of them can be corrected with techniques that have
been already developed in the machine learning community.

In a more general context, we have just about all the needed tools and parts.
It remains only to put them together.

Appendix A:

Given a computable probability function p, I will show how to generate a de-
terministic sequence (i.e. probabilities are only 0 and 1)

A NAVAVARRE

to which p gives probabilities that are extremely bad: they are always in
error by > .5.

Let ((Zp41 = 1|1Z1- -+ Z,) be w’s estimate that Z,41 will be 1, in view of
Ty T

if W(Zy =1/ A\) <.5then Z; =1lelse Z; =0

if u(Zy =1Z1) < .5 then Zy =1 else Z5 =0

if w(Zy =121, 25, Z—1) < .5 then Z, =1 else Z, = 0.
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