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Abstract

We will describe three kinds of probabilistic induction
problems, and give general solutions for each , with
associated convergence theorems that show they tend
to give good probability estimates.

The first kind extrapolates a sequence of strings
and/or numbers.

The second extrapolates an unordered set of strings
and/or numbers.

The third extrapolates an unordered set of ordered
pairs of elements that may be strings and/or num-
bers. Given the first element of a new pair, to get a
probability distribution on possible second elements
of the pair.

Each of the three kinds of problems is solved us-
ing an associated universal distribution. In each case
a corresponding convergence theorem is given, show-
ing that as sample size grows, the expected error in
probability estimate decreases rapidly.

The solutions given are very general and cover a
great variety of induction problems. Time series pre-
diction, grammar discovery (for both formal and nat-
ural languages), curve fitting, the identification prob-
lem and the categorization problem, are a few of
the kinds of problems amenable to the methods de-
scribed.

Introduction

Problems in probabilistic induction are of three gen-
eral kinds: In the first, we are given a linearly ordered
sequence of symbols to extrapolate. There is a very
general solution to this problem using the universal
probability distribution, and much has been written
on finding good approximations to it ( Sol60, Sol64a,
Sol64b, Wal68, Wal87, Wil70, Ris78, Ris87 ). It has
been shown that for long sequences, the expected er-
ror in probability estimates converge rapidly toward
zero (Sol78).

In the second kind of problem, we want to extrap-
olate an unordered sequence of finite strings and/or
numbers. A universal distribution has been defined
that solves this problem (Sol 99). We will give a con-
vergence theorem that shows it to give small errors
as the number of examples increases — just as with
sequential predictions.

In the third kind, operator induction, we have
an unordered sequence of ordered pairs of elements
(Qi, Ai) (that may be strings and/or numbers).
Given a new Qi, to obtain the probability distribu-
tion over possible Ai’s. The Q’s can be questions
in some formal or natural language, the A’s can be
associated answers. The Q’s can be inputs to some
unknown stochastic device and the A’s can be out-
puts (The Identification Problem). The Q’s can be
description of mushrooms, the A’s can tell if they are
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edible or poisonous (The Categorization Problem).
The Q’s can be numbers and the A’s can be exact
or noisy values of some unknown function of those
numbers (The Curve Fitting Problem).

We will give two solutions to this problem based
on universal distributions, and give associated con-
vergence theorems that affirm their precision in pre-
diction.

Section 1 deals with the sequential prediction and
its universal distribution. This is followed by a con-
vergence theorem for the normalized distribution and
some more recent generalizations of it.

Section 2 deals with the extrapolation of a set of
unordered strings and/or numbers, and gives an as-
sociated convergence theorem.

Section 3 deals with Operator Induction, and gives
the associated convergence theorem.

1 Sequential prediction

The universal distribution for sequential prediction is
a probability distribution on strings obtained by as-
suming the strings are the output of a universal ma-
chine with random input. We will at first consider
only universal Turing machines with binary unidirec-
tional input and output tapes and an infinite bidi-
rectional work tape. It is possible to get equivalent
distributions using more general kinds of universal
devices with less constrained input and output.

How can we use this definition to get an expression
of the probability of a particular finite string, x?

Let [Sk] be the set of all binary programs for our
reference machine, M , such that M(Sk) gives an out-
put with x as prefix. To prevent double counting we
have an additional constraint on the set [Sk] : drop-
ping the last bit of the string Sk, will give a program
with output that does not have x as prefix. With
this condition the probability of x becomes the sum
of the probabilities of all of its programs:

PM (x) =
∑

k

2−|Sk| (1)

|Sk| is the number of bits in Sk and 2−|Sk| , the
probability of an input that has Sk as prefix.

Because certain of the codes, Sk do not result in
useful output (i.e. the machine prints out part of x,
but continues to calculate without printing anything
else), the resultant probability distribution is not a
measure, but a semimeasure — i.e.,

PM (x0) + PM (x1) < PM (x)

For our first prediction method, we will normalize
PM to create P ′M

P ′M (x0) =
PM (x0)

PM (x0) + PM (x1)
P ′M (x)

P ′M (x1) =
PM (x1)

PM (x0) + PM (x1)
P ′M (x) (2)

P ′M (∧) = 1

Though there are other possible methods of nor-
malization, it is not difficult to show that the equa-
tions of (2) give us maximum P ′M (x)/PM (x) for all
x. Later we will show that this condition minimizes
the expected prediction error of P ′M .

It is easy to use P ′M for prediction:

P (x1|x) = P ′M (x1)/P ′M (x) and

P (x0|x) = P ′M (x0)/P ′M (x) (3)

Just how accurate are the predictions of P ′M?
Suppose you have a device µ, generating bi-

nary sequences according to some finitely describable
stochastic rules. It gives a probability for each of the
bits it generates. If you use the universal distribu-
tion to get probabilities for each of the bits, there
will be a difference between the two probabilities.
If you square these probability differences and add
them up, the expected value of the sum is bounded
by −1/2 ln P ′M, µ. P ′M, µ is the probability that the
universal distribution assigns to µ, the generator of
the data (Sol 78,p.426).

More exactly:
µ(xn+1 = 1|x1 x2 x3....xn) is the conditional prob-

ability distribution according to µ that the (n + 1)th
bit of a binary sting is 1, given the previous n bits,
x1 x2 x3...xn.
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P ′M (xn+1 = 1|x1 x2 x3....xn) is the corresponding
probability for P ′M

x = x1 x2 x3....xn is a string constructed using µ
as a stochastic source.

Both µ and P ′M are able to assign probabilities to
the occurrence of the symbol 1 at any point in the
sequence x based on the previous symbols in x.

The Convergence Theorem says that the total ex-
pected squared error between µ and P ′M is given by

E
µ

n∑
m=1

(P ′M (xm+1 = 1|x1 x2 x3....xm)

−µ(xm+1 = 1|x1 x2 x3....xm))2 < −1/2 ln P ′M, µ (4)

The expected value is with respect to probability
distribution, µ.

lnP ′M, µ is dependent on just what universal device
generated the universal distribution. It is approxi-
mately Kln2, where K is the Kolmogorov complexity
of the generator – the length of the shortest program
needed to describe it

Since this total error is independent of the size of
the data string being predicted it is clear that the er-
rors in the individual bits must decrease more rapidly
than 1/n, n being the length of the data sequence.

This is a very powerful result. It is clear that the
universal distribution gives very good probability es-
timates.

The truth of (4) hinges on the fact that if µ is a
computable probability measure then there exists a
positive constant P ′M, µ such that

P ′M (x)/µ(x) > P ′M, µ

and that while P ′M, µ will depend on µ(·) and
P ′M (·), it will be independent of x.

Eq. (4) can be usefully generalized :
IF
P1 and P2 are any normalized measures on x.
x(n) is a string of length n.

P2(x(n))/P1(x(n)) > α(n) > 0

–where α(n) is a function of P1(·), P2(·) and n, but
not of x

THEN

E
P2

n∑
m=1

(P1(xm+1 = 1|x1 x2 x3....xm)

−P2(xm+1 = 1|x1 x2 x3....xm))2 < −1/2 ln α(n) (5)

The Convergence Theorem of (4) is true if P ′M is
a normalized universal measure. Peter Gacs (Gac
97) has shown it to be true for the unnormalized
semimeasure, PM , but the associated convergence
constant −1/2 ln PM, µ is much larger than the corre-
sponding constant, −1/2 ln P ′M, µ for P ′M .

The difference between them is

1/2 ln(P ′M, µ/PM, µ)

P ′M, µ/PM, µ is the ratio of the values of the nor-
malization factors for n = ∞. We have selected a
normalization technique to make it as large as possi-
ble.

The result is that the probability errors for the
normalized measure, P ′M (·) can converge much more
rapidly than those for the semimeasure, PM (·).

Gacs (ibid) also shows that the generalization cor-
responding to eq. 5 holds if P2(·) is an unnormalized
semimeasure.

Marcus Hutter (Hut 02 ) shows that these results
hold if we use alphabets with any finite number of
symbols.

In the forgoing convergence theorems the total
squared probability difference is used as loss func-
tion. The proofs of the theorems also show the same
convergence for the Kullback–Liebler loss function
(which is greater than or equal to the square loss
function – resulting in stronger theorems).

Hutter (ibid) considers more general loss functions
for the universal distribution and obtains associated
convergence theorems.

2 Induction on Unordered Sets

2.1 The Problem and a Solution

We have an unordered set of n finite strings of sym-
bols, D1, D2 . . . Dn . Given a new string, Dn+1 , what
is the probability that it belongs to the set? Or —
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given a string, a , how must it be completed so it
is most likely to be a member of the set? Or, given
a string a and a set of possible completions, [abj ],
what is the relative probability of each of these com-
pletions?

A common example of unordered set prediction oc-
curs in natural and formal languages. We are given
a set of examples of strings that are acceptable sen-
tences. Given a new string, what is the probability
that it is acceptable? A common solution technique
is to devise a well fitting stochastic grammar for the
known set of strings. The universal distribution gives
a criterion for goodness of fit of such grammars [Hor
71, Sol 64b pp.240-251].

The Universal Distribution PM , is a weighted
sum of all finitely describable semimeasures on finite
strings:

PM ([Di]) =
∑

j

αj

n∏

i=1

Pj(Di) (6)

n is the number of strings in the set [Di]
αj is the weight of the jth semimeasure on finite

strings.
αj = 2−|aj | where aj is the shortest description of

Pj(·) and |aj | is the number of bits in aj

The M subscript of PM indicates that the functions
Pj are to be described with reference to machine, M .
Since M is universal, it can be used to describe any
describable function.

Suppose that [Di] i = 1...n is a set of n strings
generated by some unknown stochastic device, µ(·).
What is the probability that our universal distribu-
tion assigns to a new string, Dn+1 ?

It is just

P (Dn+1) = PM ([Di]
⋃

Dn+1)/PM ([Di]) (7)

The probability assigned to [Di] by it’s
creator,µ(·), is

µ([Di]) =
n∏

i=1

µ(Di) (8)

For a suitable set of strings, [Di], the probability
assigned by PM in (6) can be very close to those as-

signed by µ(·), the generator of [Di], in (8). In section
3, we will discuss Operator Induction and prove an
associated convergence theorem. Section 3.3 shows
that this convergence theorem implies a convergence
theorem for (6), insuring small expected errors be-
tween the probability estimates of PM (·) and those
of µ(·).

3 Operator Induction

In the Operator Induction problem, we are given
an unordered set of n strings and/or number pairs,
[Qi, Ai]. Given a new Qn+1, what is the probability
distribution over all possible An+1? We will give two
solutions.

3.1

In the first, we consider the problem to be an extrap-
olation of an unordered set of finite strings, Di, in
which Di = (Qi, Ai)

Eq. 6 is used to obtain a probability distribution
on all unordered sets of Qi, Ai pairs and (7) gives us
a probability distribution over (Qn+1, An+1) — i.e.
P (Qn+1, An+1) for all possible An+1.

Then

P (An+1) = P (Qn+1, An+1)/
∑

i

P (Qn+1, Ai) (9)

3.2

For the second solution to the Operator Problem, we
express the probability of an arbitrary An+1 directly
as a function of the data set, [Qi, Ai]. For this data
set, the probability distribution of An+1 is

∑

j=1

aj
0

n+1∏

i=1

Oj(Ai|Qi) (10)

Here Oj(·|·) is the jth possible conditional prob-
ability distribution relating its two arguments.
Oj(Ai|Qi) is the probability of Ai, given Qi, in view
of the function Oj
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We would like to sum over all total recursive func-
tions, but since this set of functions is not effectively
enumerable, we will instead sum over all partial re-
cursive functions, which are effectively enumerable.

aj
0 is the a priori probability of the function Oj(·|·) .

It is approximately 2−l(Oj) where l(Oj) is the length
in bits of the shortest description of Oj .

We can rewrite (10) in the equivalent form

∑

j=1

aj
nOj(An+1|Qn+1) (11)

Here,

aj
n = aj

0

n∏

i=1

Oj(Ai|Qi)

In (11), the distribution of An+1 is a weighted sum
of all of the Oj distributions — the weight of each Oj

being the product of its a priori probability and the
probability of the observed data in view of Oj .

Section 3.3 shows that even with a relatively short
sequence of Q,A pairs, these distributions tend to be
very accurate. If we use the aj

0 to express all of our a
priori information about the data, they are perhaps
the most accurate possible.

Since we cannot compute this infinite sum using fi-
nite resources, we approximate it using a finite num-
ber of large terms — terms that in (11) have large
aj

n values. While it would seem ideal to include the
terms of maximum weight, it has been shown to be
impossible to know if a particular term is of maxi-
mum weight. The best we can do is to find a set
of terms of largest total weight in whatever time we
have available.

We can completely characterize the problem of op-
erator induction to be finding, in whatever time is
available, a set of functions, Oj(·|·) such that

∑
j aj

n

is as large as possible.

3.3

We will show that for an adequate sequence of
(Qi, Ai) pairs, the predictions obtained by the prob-
ability distribution of (10) can be expected to be ex-
tremely good.

To do this, we hypothesize that the sequence of Ai

answers that have been observed, were created by a
probabilistic algorithm, µ(Ai|Qi) and that µ can be
described with k bits.

Any probability distribution that assigns probabil-
ities to every possible Ai, must also assign probabil-
ities to each bit of Ai:

Suppose that ar is a string of the first r bits of Ai.
Then the probability given by µ that the (r+1)th bit
of Ai is 1 is

∑

j

µ(ar1xj |Qi)
/ ∑

j

µ(arx
j |Qi)

xj ranges over all finite strings.
Similarly, P (·) the algorithm of (10), can be used to

assign a probability to every bit of every Ai. We will
represent the sequence of Ai’s by a string, Z, that is
formed by concatenating these Ai’s then separating
them by the symbols, s — denoting “space”. Z, then,
is a sequence of symbols from the ternary alphabet
0, 1, s. Using an argument similar to the foregoing,
it is clear that both µ and P are able to assign prob-
abilities to the space symbol, s as well as to 0, and
1, since each of them must be able to specify when
each Ai string terminates.

We have, then, two probability distributions on
the ternary strings, Z. In the first distribution, µ
is the creator of the observed sequence, and in the
second distribution, P , through (10), tries to predict
the symbols of Z.

For two such probability distributions on ternary
strings, we can apply Hutter’s (ibid) generalization
to arbitrary alphabet, of the generalized convergence
theorem, (5) : The expected value, with respect to
µ (the “generator”), of the sum of the squares of the
differences in probabilities assigned by µ and P to
the symbols of the string are less than − ln c, c being
the largest positive number such that P/µ > c for all
arguments of P and µ.

More exactly:

∑

l

µ(Zl)
n∑

i=1

hl
i+1∑

j=0

∑
t=0,1,s

(P l
i,j(t)− µl

i,j(t))
2 < k ln 2

(12)
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l sums over all strings Zl that consist of n finite
binary strings separated by s symbols (spaces).

Al
i is the ith A of Zl

P l
i,j(t) is the probability as given by P that the jth

symbol of Al
i will be t, conditional on previous sym-

bols of Al
i’s in the sequence, Zl and the corresponding

Q’s.
t takes the values 0,1 and s.
µl

i,j(t) is defined similarly to P l
i,j(t), but it is inde-

pendent of previous Al
i’s in the sequence.

hl
i is the number of bits in Al

i. The (hl
i+1)th symbol

of Al
i is always s.

The total number of symbols in Zl is
∑n

i=1(h
l
i +1).

µ(Zl) is the probability that µ assigns to Zl in view
of the sequence of Q’s.

k is the length in bits of the shortest description of
µ.

This implies that the expected value with respect
to µ of the squared “error” between P and µ, summed
over the individual symbols of all of the Ai, will be
less than k ln 2

Since the total number of symbols in all of the an-
swers can be very large for even a small number of
questions, the error per symbol decreases rapidly as
n, the number of Q,A pairs increases.

Equation (12) gives a very simple measure of the
accuracy of equation (10). There are no “order of
one” constant factors or additive terms. A necessary
uncertainty is in the value of k. We normally will
not know its value, but if the generator of the data
has a long and complex description, we are not sur-
prised that we should need more data to make good
predictions — which is just what (12) specifies.

The value of the constant, k, depends critically on
just what universal reference machine is being used to
assign a priori probability to the Oj and to µ. Any a
priori information that a researcher may have can be
expressed as a modification of the reference machine
— by inserting low cost definitions of concepts that
are believed to be useful in the needed induction —
resulting in a shorter codes for the Oj(·), for µ, ( a
smaller k ), and less error.

We believe that if all of the needed a priori infor-
mation is put into the reference machine, then (10)
is likely to be the best probability estimate possible.

At first glance, this result may seem unreasonable:
Suppose we ask the system many questions about
Algebra, until it’s mean errors are quite small — then
we suddenly begin asking questions about Linguistics
— certainly we would not expect the small errors to
continue! However, what happens when we switch
domains suddenly, is that k suddenly increases. A
µ that can answer questions on both Algebra and
Linguistics has a much longer description than one
familiar with Algebra only. This sudden increase in k
accommodates large expected errors in a new domain
in which only a few questions have been asked.

3.4

If we set Qi =
∧

(i = 1...n) in(10), it becomes clear
that the equation (6) for induction on unordered sets
is a special case of Operator Induction, and that the
Convergence Theorem (12) holds for (6) as well. This
also assures convergence of the Operator Induction
technique of Section 2.1.

Is there any advantage in using (9) rather than (10)
for Operator Induction?

(9) exploits regularities in the set [Qi, Ai]. It in-
cludes regularities in the set [Qi] — which we do not
use — so it would seem that we are doing more work
than is necessary. In (10), we only find regularities in
functions relating Qi to Ai. Such regularities may be
easier to find than regularities in the more complex
object [Qi, Ai]. In general, however, the finding of
regularities for either of the techniques will depend
critically on just what problem is being solved.
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