
Algorithmic Probability — Its Discovery — Its

Properties and Application to Strong AI

Ray J. Solomonoff

Visiting Professor, Computer Learning Research Centre
Royal Holloway, University of London

IDSIA, Galleria 2, CH–6928 Manno–Lugano, Switzerland

rjsolo@ieee.org http://world.std.com/˜rjs/pubs.html

Introduction

We will first describe the discovery of Algorithmic Probability — its motivation,
just how it was discovered, and some of its properties. Section two discusses its
Completeness — its consummate ability to discover regularities in data and why
its Incomputability does not hinder to its use for practical prediction. Sections
three and four are on its Subjectivity and Diversity — how these features play
a critical role in training a system for strong AI. Sections five and six are on the
practical aspects of constructing and training such a system. The final Section,
seven, discusses present progress and open problems.

1 Discovery

My earliest interest in this area arose from my fascination with science and
mathematics. However, in first studying geometry, my interest was more in
how proofs were discovered than in the theorems themselves. Again, in science,
my interest was more in how things were discovered than in the contents of the
discoveries. The Golden Egg was not as exiting as the goose that laid it.

These ideas were formalized into two goals: one goal was to find a general
method to solve all mathematical problems. The other goal was to find a general
method to discover all scientific truths. I felt the first problem to be easier
because mathematics was deterministic and scientific truths were probabilistic.
Later, it became clear that the solutions to both problems were identical!1

1The subject of the beginning of this essay has been treated in some detail in “The Dis-
covery of Algorithmic Probability”(Sol 97). Here, we will summarize some ideas in that paper
and deal with important subsequent developments.

1

Some important heuristic ideas:

First — From Rudolph Carnap: That the state of the universe could be
represented by a long binary string, and that the major problem of science was
the prediction of future bits of that string, based on its past.

Second — From Marvin Minsky and John McCarthy: the idea of a universal
Turing machine. That any such machine could simulate any describable function
or any other Turing machine (universal or not). That it had a necessary “Halting
Problem” — that there had to be inputs to the machine such that one could
never be sure what the output would be.

Third — Noam Chomsky’s description of Generative and Nongenerative
grammars. To use them for prediction, in 1958 I invented Probabilistic Gram-
mars (Described in the appendix of (Sol 59)).

The final discovery occurred in 1960 (Sol 60) when I began investigating the
most general deterministic Grammar — based on a universal Turing machine.
It’s probabilistic version had some striking properties and suggested to me that
a probabilistic grammar based on a universal Turing machine would be the most
general type of grammar possible — and would perhaps be the best possible way
to do prediction.

This was the birth of Algorithmic Probability (ALP). In the initial version,
we take a universal Turing machine with an input tape and an output tape.
Whenever the machine asks for an input bit, we give it a zero or a one with
probability one–half. The probability that (if and when the machine stops) the
output tape is a certain binary string, x, is the universal probability of x. This
was a universal distribution on finite strings.

I was much more interested in sequential prediction (as in Carnap’s problem),
so I generalized it in the following way: We use a special kind of universal Turing
machine. It has three tapes — unidirectional input and output tapes, and an
infinite bidirectional work tape. We populate the input tape with zeros and
ones, each with probability one–half. The probability of the string x is the
probability that the output tape will be a string that begins with x.

This second universal distribution can be used for sequential prediction in
the following way: suppose P (x1) is the probability assigned by the distribution
to the string, x1. Let P (x0) be probability assigned to x0. Then the probability
that x will be followed by 1 is

P (x1)/((P (x0) + P (x1)) (1)

I will be usually be referring to this second model when I discuss ALP.
It is notable that ALP doesn’t need Turing machines to work properly. Al-

most all of its properties carry over if we use any computer or computer language
that is “universal” — i.e. that it can express all computable functions in an
efficient way. Just about all general purpose computers are “universal” in this
sense, as are general programming languages such as Fortran, LISP, C, C++,
Basic, APL, Mathematica, Maple, ...

2

2 Completeness and Incomputability

Does ALP have any advantages over other probability evaluation methods? For
one, it’s the only method known to be complete. The completeness property
of ALP means that if there is any regularity in a body of data, our system is
guaranteed to discover it using a relatively small sample of that data. More
exactly, say we had some data that was generated by an unknown probabilistic
source, P . Not knowing P , we use instead, PM , the Algorithmic Probabilities
of the symbols in the data. How much do the symbol probabilities computed
by PM differ from their true probabilities, P?

The Expected value with respect to P of the total square error between P
and PM is bounded by −1/2 lnP0.

EP

[n∑
m=1

(PM (am+1 = 1|a1, a2 · · · am)− P (am+1 = 1|a1, a2 · · · am))2
] ≤ −1

2
lnP0

lnP0 ≈ kln2 (2)

P0 is the a priori probability of P . It is the probability we would assign to
P if we knew P .

k is the Kolmogorov complexity of the data generator, P . It’s the shortest
binary program that can describe P , the generator of the data.

This is an extremely small error rate. The error in probability approaches
zero more rapidly than 1/n. Rapid convergence to correct probabilities is a
most important feature of ALP. The convergence holds for any P that is de-
scribable by a computer program and includes many functions that are formally
incomputable. The convergence proof is in (Sol 78). It was discovered in 1968,
but since there was little general interest in ALP at that time I didn’t publish
until 1975 (Sol 75) and it wasn’t until 1978 (Sol 78) that a proof was published.
The original proof was for a mean square loss function and a normalized univer-
sal distribution. — but the proof itself showed it to be also true for the more
general KL loss function. Later, Peter Gács (Gács 97) showed it would work for
a universal distribution that was not normalized and Marcus Hutter (Hut 02)
showed it would work for arbitrary (non-binary) alphabets, and for a variety of
loss functions.

While ALP would seem to be the best way to predict, the scientific and
mathematical communities were disturbed by another property of algorithmic
probability: — it was incomputable! This incomputability is attributable to
“the halting problem” — that there will be certain inputs to the Turing machine
for which we can never be certain as to what the output will be.

It is, however, possible to get a sequence of approximations to ALP that
converge to the final value, but at no point can we make a useful estimate as to
how close we are to that value.

Fortunately, for practical prediction, we very rarely need to know “the final
value”. What we really need to know is “How good will the present approximate
predictions be in the future (out of sample) data”? This problem occurs in all

3

prediction methods and algorithmic probability is often able to give us insight
on how to solve it.

It is notable that completeness and incomputability are complementary prop-
erties: It is easy to prove that any complete prediction method must be incom-
putable. Moreover, any computable prediction method cannot be complete—
there will always be a large space of regularities for which its predictions are
catastrophically poor.

Since incomputability is no barrier to practical prediction, and computable
prediction methods necessarily have large areas of ineptitude, it would seem
that ALP would be preferred over any computable prediction methods.

There is, however another aspect of algorithmic probability that people find
disturbing — it would seem to take too much time and memory to find a good
prediction. In Section 5 we will discuss this at greater length. There is a
technique for implementing ALP that seems to take as little time as possible to
find regularities in data.

3 Subjectivity

Subjectivity in science has usually been regarded as Evil. — that it is something
that does not occur in “true science” — that if it does occur, the results are
not “science” at all. The great statistician, R. A. Fisher, was of this opinion.
He wanted to make statistics “a true science” free of the subjectivity that had
been so much a part of its history.

I feel that Fisher was seriously wrong in this matter, and that his work in
this area has profoundly damaged the understanding of statistics in the scientific
community — damage from which it is recovering all too slowly.

Two important sources of error in statistics are finite sample size and model
selection error. The finite sample part has been recognized for some time. That
model selection error is a necessary part of statistical estimation is an idea that
is relatively new, but our understanding of it has been made quite clear by ALP.
Furthermore, this kind of error is very subjective, and can depend strongly on
the lifelong experience of a scientist.

In ALP, this subjectivity occurs in the choice of “reference” — a universal
computer or universal computer language. In the very beginning, (from the
“invariance theorem”) it was known that this choice could only influence proba-
bility estimates by a finite factor — since any universal device can simulate any
other universal device with a finite program. However, this “finite factor” can
be enormous — switching between very similar computer languages will often
give a change of much more than 21000 in probability estimates!

To understand the role of subjectivity in the life of a human or an intelligent
machine, let us consider the human infant. It is born with certain capabilities
that assume certain a priori characteristics of its environment–to–be. It expects
to breathe air, its immune system is designed for certain kinds of challenges,
it is usually able to learn to walk and converse in whatever human language it
finds in its early environment. As it matures, its a priori information is modified

4

and augmented by its experience.
The AI system we are working on is of this sort. Each time it solves a

problem or is unsuccessful in solving a problem, it updates the part of its a
priori information that is relevant to problem solving techniques. In a manner
very similar to that of a maturing human being, its a priori information grows
as the life experience of the system grows.

From the foregoing, it is clear that the subjectivity of algorithmic proba-
bility is a necessary feature that enables an intelligent system to incorporate
experience of the past into techniques for solving problems of the future.

4 Diversity

In Section 1 we described ALP with respect to a universal Turing machine with
random input. An equivalent model considers all prediction methods, and makes
a prediction based on the weighted sum of all of these predictors. The weight of
each predictor is the product of two factors: the first is the a priori probability
of each predictor. — It is the probability that this predictor would be described
by a universal Turing machine with random input. If the predictor is described
by a small number of bits, it will be given high a priori probability. The second
factor is the probability assigned by the predictor to the data of the past that is
being used for prediction. We may regard each prediction method as a kind of
model or explanation of the data. Many people would use only the best model
or explanation and throw away the rest. Minimum Description Length (Ris 78),
and Minimum Message Length(Wal 68) are two commonly used approximations
to ALP that use only the best model of this sort. When one model is much
better than any of the others, then Minimum Description Length and Minimum
Message Length and ALP give about the same predictions. If many of the best
models have about the same weight, then ALP gives better results.

However, that’s not the main advantage of ALP’s use of a diversity of ex-
planations. If we are making a single kind of prediction, then discarding the
non-optimum models usually has a small penalty associated with it. However if
we are working on a sequence of prediction problems, we will often find that the
model that worked best in the past, is inadequate for the new problems. When
this occurs in science we have to revise our old theories. A good scientist will
remember many theories that worked in the past but were discarded — either
because they didn’t agree with the new data, or because they were a priori “un-
likely”. New theories are characteristically devised by using failed models of the
past, taking them apart, and using the parts to create new candidate theories.
By having a large diverse set of (non-optimum) models on hand to create new
trial models, ALP is in the best possible position to create new, effective models
for prediction.

When ALP is used in Genetic Programming, it’s rich diversity of models
can be expected to lead to very good, very fast solutions with little likelihood
of “premature convergence”.

5

5 Computation Costs

If Algorithmic Probability is indeed so very effective, it is natural to ask about
its computation costs — it would seem that evaluating a very large number of
prediction models would take an enormous amount of time. We have, however,
found that by using a search technique similar to one used by Levin for somewhat
different kinds of problems, that it is possible to perform the search for good
models in something approaching optimum speed. It may occasionally take a
long time to find a very good solution — but no other search technique could
have found that solution any faster.

A first approximation of how the procedure works: Suppose we have a uni-
versal machine with input and output tapes and a very big internal memory. We
have a binary string, x, that we want to extrapolate — to find the probability of
various possible continuations of x. We could simply feed many random strings
into the machine and watch for inputs that gave outputs that started with x.
This would take a lot of time, however. There is a much more efficient way:

We select a small time limit, T , and we test all input strings such that

tk < T2−lk (3)

Here lk is the length of the kth input string being tested, and tk is the time
required to test it. The test itself is to see if the output starts with string x.
If we find no input that gives output of the desired kind, we double T and go
through the same test procedure. We repeat this routine until we find input
strings with output strings that start with x. If we give each such output a
weight of 2−lk (lk being the length of its input), the weighted output strings
will get a probability distribution over the possible continuations of the string,
x.

In the example given, all input strings of a given length were assumed to have
the same probability. As the system continues to predict a long binary sequence,
certain regularities will occur in input sequences that generate the output. These
regularities are used to impose a nonuniform probability distribution on input
strings of a given length. In the future this “adaptation” of the input distribution
enables us to find much more rapidly, continuations of the data string that we
want to predict.

6 Training Sequences

It is clear that the sequence of problems presented to this system will be an
important factor in determining whether the mature system will be very much
more capable than the infant system. Designing “training sequences” of this sort
is a crucial and challenging problem in the development of strong intelligence.

In most ways, designing a training sequence for an intelligent machine, is
very similar to designing one for a human student. In the early part of the
sequence, however, there is a marked difference between the two. In the early
training sequence for a machine, we know exactly how the machine will react

6

to any input problem. We can calculate a precise upper bound on how long it
will take the machine to solve early problems. It is just

Ti/Pi (4)

Pi is the probability that the machine assigns to the solution that is known
by the trainer. Ti is the time needed to test that solution. I call this upper
bound the “conceptual jump size” (CJS). It tells us how hard a problem is for
a particular AI. I say “upper bound” because the system may discover a better,
faster, solution than that known by the trainer.

This CJS estimate makes it easy to determine if a problem is feasible for a
system at a particular point in its education. The Pi for a particular problem
will vary during the life of the system. For a properly constructed training
sequence, the Pi associated with a particular problem should increase as the
system matures.

Eventually in any training sequence for a very intelligent machine, the trainer
will not be able to understand the system in enough detail to compute CJS
values. The trainer will then treat the machine as a human student. By noting
which problems are easy and which are difficult for the machine the trainer will
make a very approximate model of the machine and design training problems
using that model.

Learning to train very intelligent machines should give very useful insights
on how to train human students as well.

7 Where Are We Now?

A system incorporating some of the features we have discussed has been pro-
grammed by Schmidhuber (Sch 02). It was able to discover a recursive solution
to the “Tower of Hanoi” problem, after finding a recursive solution to one of its
earlier, easier problems.

For further progress, we need larger, more detailed training sequences —
Writing sequences of this sort is a continuing “Open Problem” (Sol 89)

The process of updating the system in view of its past experience is an-
other important area of ongoing research. We have considered PPM (Predic-
tion by Partial Matching (Tea 95)), APPM (an augmented version of PPM)
and SVR (Support Vector Regression (Sap 09)) as possible updating systems.
The improvement of the updating algorithm remains another continuing “Open
Problem”.

References

[1] (Gács 74) Gács. P. Theorem 5.2.1 in An Introduction to Kolmogorov Com-
plexity and Its Applications, Springer–Verlag, N.Y., 2nd edition, pp. 328-
331, 1997.

7

[2] (Hut 02) Hutter, M.,“Optimality of Universal Bayesian Sequence
Prediction for General Loss and Alphabet,”
http://www.idsia.ch/ marcus/ai/

[3] (Ris 78) Rissanen, J. “Modeling by the Shortest Data Description,” Auto-
matica, 14:465–471, 1978.

[4] (Sch 02) Schmidhuber, J., “Optimal Ordered Problem Solver,” TR IDSIA-
12-02, 31 July 2002. http://www.idsia.ch/ juergen/oops.html

[5] (Sap 09) Sapankevych, N. and Sankar, R., “Time Series Prediction Using
Support Vector Machines: A Survey,” IEEE Computational Intelligence
Vol. 4, No. 2, pp 24–38, May 2009

[6] (Sol 59) Solomonoff, R.J. “A Progress Report on Machines to Learn to
Translate Languages and Retrieve Information,” Advances in Documenta-
tion and Library Science, Vol. III, pt. 2, pp. 941–953. (Proceedings of a
conference in September 1959.)

[7] (Sol 60) Solomonoff, R.J. “A Preliminary Report on a General Theory of
Inductive Inference.” (Revision of Report V–131, Feb. 1960), Contract AF
49(639)–376, Report ZTB–138, Zator Co., Cambridge, Mass., Nov, 1960.

[8] (Sol 75) Solomonoff, R.J. “Inductive Inference Theory – a Unified Approach
to Problems in Pattern Recognition and Artificial Intelligence,” Proceed-
ings of the 4th International Conference on Artificial Intelligence, pp 274–
–280, Tbilisi, Georgia, USSR, September 1975.

[9] (Sol 78) Solomonoff, R.J. “Complexity–Based Induction Systems: Compar-
isons and Convergence Theorems,” IEEE Trans. on Information Theory,
Vol IT—24, No. 4, pp. 422 –432, July 1978.

[10] (Sol 89) Solomonoff, R.J. “A System for Incremental Learning Based on
Algorithmic Probability,” Proceedings of the Sixth Israeli Conference on
Artificial Intelligence, Computer Vision and Pattern Recognition, pp. 515–
527, Dec. 1989.

[11] (Sol 97) Solomonoff, R.J. “The Discovery of Algorithmic Probability,” Jour-
nal of Computer and System Sciences, Vol. 55, No. 1, pp. 73–88, August
1997.

[12] (Tea 95) Teahan, W.J. “Probability Estimation for PPM,” Proc.
of the New Zealand Computer Science Research Students’ Con-
ference, University of Waikato, Hamilton, New Zealand, 1995.
http://cotty.16x16.com/compress/peppm.htm

[13] (Wal 68) Wallace, C.S and Boulton, D.M. “An Information Measure for
Classification,” Computer Journal, 11:185–194, 1968.

8

