
A Formal Theory of Inductive Inference.

Part II

Ray J. Solomonoff

Visiting Professor, Computer Learning Research Center
Royal Holloway, University of London

IDSIA, Galleria 2, CH–6928 Manno–Lugano, Switzerland

rjsolo@ieee.org http://world.std.com/˜rjs/pubs.html ∗ †

Reprinted from INFORMATION AND CONTROL. Volume 7, No. 2, June
1964, pp. 224–254. Copyright by Academic Press Inc.

4 Applications of the Systems to Various
Problems in Induction

The following sections will apply the foregoing induction systems to three spe-
cific types of problems, and discuss the “reasonableness” of the results obtained.

Section 4.1 deals with the Bernoulli sequence. The predictions obtained
are identical to those given by “Laplace’s Rule of Succession.” A particularly
important technique is used to code the original sequence into a set of integers
which constitute its “descriptions” for the problems of Sections 4.2 and 4.3.

Section 4.2 deals with the extrapolation of a sequence in which there are
certain kinds of intersymbol constraints. Codes for such sequences are devised
by defining special symbols for subsequences whose frequencies are unusually
high or low. Some properties of this coding method are discussed, and they
are found to be intuitively reasonable. A preliminary computer program has
been written for induction using this coding method. However, there are some
important simplifications used in the program, and it is uncertain as to whether
it can make useful predictions.

Section 4.3 describes the use of phrase structure grammars for induction. A
formal solution is presented and although the resultant analysis indicates that
this model conforms to some extent to intuitive expectations, the author feels
that it still has at least one serious shortcoming in that it has no good means

∗This research was supported by AFOSR Contract No. AF 49(638)-376, Grant No. AF–
AFOSR 62–377, and Public Health Service Grant No. GM 11021-01.

†Sections 4.1 and 4.2 are more exact presentations of much material in Zator Technical
Bulletins 140 and 141 of April 1961 and April 1962 respectively. Part I of the present paper
appeared in the March 1964 issue of Information and Control.

1

for giving definitions to subsequences that occur with unusually low frequency.
The method of Section 4.2, however, does have this capability though it is in
general a less powerful extrapolation method. It is felt that ideally, the method
of 4.2 should be a special case of that of 4.3.

This admittedly inadequate formal solution is then applied in an approxi-
mate way to the problem of finding a grammar that “best fits” a given set of
strings. The results appear to be reasonable, but their plausibility is reduced
by the uncertainty of the approximations used.

Sections 4.1, 4.2, and 4.3 give methods of assigning a set of integers to a finite
string of symbols drawn from some alphabet. These methods are all invertable,
so that given any integer, and the alphabet being used, it is possible to find
what string of symbols that integer corresponds to.

The decoding instructions are of the type that can be described to a universal
machine. This means that there exists a finite string, S, such that for all integers,
B, expressed in binary notation,

M1(ŜB) = α (15)

will give the original string of symbols, α, for which the integer B is the code.
We shall then consider B to be “a code for α.” B will not be a code for α

with respect to M1 , however, but with respect to M ′
1.

M ′
1 is defined by the condition that for all possible binary sequences, X,

M ′
1(X) = M1(ŜX) (16)

In each of Sections 4.1, 4.2, and 4.3, S will be somewhat different.
Each of these sections will try to show that, with respect to its particular

machine, M ′
1, the extrapolations obtained using Eq. (1) (which is reproduced

below) are reasonable ones.

P (a, T,M1) ≡ lim
ε→0

lim
n→∞

rn∑

k=1

∞∑

i=1

[(1− ε)/2]
N(STaCn,k

)i

rn+1∑

k=1

∞∑

i=1

[(1− ε)/2]
N(STCn+1,k

)i

(1)

Section 3.1.3 discussed machines which “summarized” certain of the statis-
tical properties of a given finite corpus. M ′

1 can be considered to be a machine
of this type. In Section 4.1, for example, M ′

1 “summarizes” certain properties
of the general Bernoulli sequence, and is a “useful” summary of the corpus, if
that corpus contains many Bernoulli sequences.

If the sequences being extrapolated are, indeed, of the types discussed in
each section, then arguments similar to those of Section 3.1.2.3 can be applied
to make it plausible that the results are independent of just what machine was
used.

2

4.1 Induction for the Bernoulli Sequence

A Bernoulli sequence is a Markov sequence in which the probability of each sym-
bol is constant throughout the sequence, and is independent of the subsequence
preceding that symbol.

The present section will apply Eq. (1) (which is reproduced in the previous
section) to the problem of computing the probabilities of successive members of
a Bernoulli sequence. This is about the simplest kind of induction problem that
exists, and it has been the subject of much discussion (Keynes, 1921).

The result, in the present case, is similar to one obtained by Laplace, which
is called “Laplace’s rule of succession.” One set of assumptions that leads to
his result is that the probabilities of the frequencies for each of the symbols in
the Bernoulli sequence are initially uniformly distributed between zero and one.
Then Laplace’s rule gives the “expected value” of the frequency of each type of
symbol, after a certain initial subsequence of that entire Bernoulli sequence is
known. The ratio of the expected frequencies of the symbols A and B in the
entire sequence is

CA + 1
CB + 1

(17)

CA and CB being the number of occurrences of A and B, respectively, in the
known subsequence.

The present analysis is used to illustrate a particularly important kind of
coding method. In Sections 4.2 and 4.3 this coding method is generalized to
apply to sequences in which are intersymbol constraints of certain kinds.

4.1.1 A Detailed Description of the Coding Method

For any Bernoulli sequence, we will give a method for assigning a set of numbers
to that sequence. Each number will be a code for the sequence, so that given
any integer, and an ordered list of the symbol types to be used in the sequence,
the associated Bernoulli sequence can be uniquely determined.

Later, these code numbers will be used to compute a-priori probabilities
of various sequences, and from these, in turn, an expression for conditional
probabilities of successive symbols of the sequence will be obtained.

To assign a code number to a Bernoulli sequence, we will first assign an
ordered sequence of ordered pairs of integers to the sequence. There will be a
pair of integers for each symbol in the original sequence.

Consider the Bernoulli sequence:

α ≡ BBABCCABCCBA (18)

The only symbols used are A, B, and C.
We will then write the sequence of symbol types, ABC, followed by the

original Bernoulli sequence. This gives:

β ≡ABC
1

B
2

B
3

A
4

B
5

C
6

C
7

A
8

B
9

C
10

C
11

B
12

A (19)

3

The first symbol of α in Eq. (18) is B. The integer pair assigned to this
will be (3,2). The 3, because there are 3 symbols in β before the symbol to be
coded. The 2, because the only previous occurrence of B is the second symbol.

The second symbol of α is also B. Its integer pair can be either (4,2) or
(4,4). The reason is that in β, both the second and fourth symbols are B.

The integer pair for A, the third symbol of α, is (5,1).
The integer pair for B, the fourth symbol of α, is either (6,2), (6,4) or (6,5).
The integer pair for C. the fifth symbol of α, is (7,3).
One permissible intermediate code for the first five symbols of α is then

a ≡ (3, 2), (4, 2), (5, 1), (6, 5), (7, 3) (20)

Since there are two possible choices for the representation of the second
symbol of α, and three possible choices for the fourth symbol of α, there are
2 × 3 = 6 permissible intermediate codes for the subsequence consisting of the
first five symbols of α.

To change the intermediate code,

(a1, b1), (a2, b2), (a3, b3), · · · , (am, bm)

into an integer, we use the formula

k = ((· · · (((bmam−1 + bm−1) am−2

+ bm−2) am−3 + bm−3) · · ·) a2 + b2) a1 + b1 (21)

k is then the integer code number for the sequence, α.
In the case of intermediate code, a, this gives

k = (((3 · 6 + 5) · 5 + 1) · 4 + 2) · 3 + 2 = 1400 (22)

It is possible to reverse this process and go from k back to the original
intermediate code. To do this:

Divide k by a1 . The remainder is b1

Divide the quotient by a2. The remainder is b2.
Divide the resulting quotient by a3. The remainder is b3.
Continue until no more bi’s are obtainable.
In the present case, all ai’s are known in advance.

ai = i + 2 (23)

More generally

ai = i + r − 1 (24)

where r is the number of symbol types in the Bernoulli sequence.
It is possible to obtain a very simple approximation for the value of k. Ex-

panding Eq. (21), we obtain

4

k = bmam−1am−2 · · · a2a1

+ bm−1am−2 · · · a2a1

+ · · ·
+ b3a2a1

+ b2a1

+ b1

(25)

Since am−1 = m + r− 2 and m will be very large in all cases of interest, we will
usually be able to neglect all but the first term, and write

k ≈ bmam−1am−2 · · · a2al (26)

It will be noted in Eq. (25) that it is possible for bm−1 to equal am−1 and
for bm to equal unity. In this case, it is clear that the second term is as large as
the first, though, as before, the rest of the terms are negligible if m is large.

In the applications of the approximation of (26), however, (i.e., in expressions
(37) and (38)) a summation is taken over many k’s, and all values of bm between
1 and m + r are used. The result is that the approximation of Eq. (26) is valid
for almost all terms of the sums, and the cases where it is not valid contribute
a negligible part to the sums.

4.1.2 Conditional Probabilities in the Bernoulli Sequence

Let us now consider the problem of determining the relative probabilities of
various possible continuations of the m symbol sequence, α. In the following
discussion, we shall allow α to have only 3 different symbol types, A, B, and
C. The discussion, however, holds equally well if there is any finite number of
symbols in the alphabet.

First we will rewrite Eq. (1), so it will give the relative probability that A
rather than B, will follow the sequence, α.

lim
ε→0

lim
n→0

rn∑

j=1

∞∑

i=1

[(1− ε)/2]
N(SαACn,j)i

rn∑

j=1

∞∑

i=1

[(1− ε)/2]
N(SαBCn,j)i

(27)

r is the number of symbols in the alphabet — which is three, in the present
case. Cn,j is as in Eq. (1) (which is reproduced in Section 4), the jth of the
rn possible sequences of n symbols. N(SαACn,j

)i is the number of bits in the
ith possible code of the sequence αACn,j . Essentially, this equation says that
we should consider all possible continuations of the sequence to a distance of n
symbols into the future.

5

Then the relative probability of the symbol A following the sequence α,
rather than the symbol B following α, will be approximated by the total a-
priori probabilities of all sequences of length m + n + 1 that start out with the
sequence αA, divided by the corresponding expression for sequences that start
out with αB.

The approximation becomes exact as n approaches infinity.
In the present case, it will become clear that the value of the approximation

is constant for n ≥ 1 so we will consider only n = 1.
For the a-priori probability of the jth sequence of m + 1 + n symbols, we

will use the approximation,

∑

i

1
(ki,j)1+δ

(28)

ki,j is the ith code number that is a legal representation of that sequence. δ is
defined to be −log2(1− ε), so δ → 0 as ε → 0.

It will be noted that this expression differs from that used in Eq. (27).
There, the expression used was equivalent to

∑

i

(1
2
(1− ε)

)N(ki,j) (29)

Here, N(ki,j) is the number of bits in the binary expression for the integer ki,j .
We will approximate N(ki,j) by log2ki,j . This then gives for a-priori probability,

∑

i

1
2

log2ki,j

(1− ε)log2ki,j (30)

If we set 1− ε ≡ 2−δ, we obtain

∑

i

1
2

log2ki,j

· 2−δlog2ki,j =
∑

i

1
(ki,j)1+δ

(31)

Setting n = 1, and using δ instead of ε, we obtain the approximation

lim
δ→0

∑r
j=1

∑
i 1/k

(1+δ)
i,j∑r

j=1

∑
i 1/k

′(1+δ)
i,j

(32)

for Eq. (27). βj(j = 1, 2 · · · r) is the jth symbol of the alphabet; ki,j is the ith
code of the sequence αAβj ; k′i,j is the corresponding expression for αBβj .

The summation on i is taken over a finite number of terms, since in the
present case there are only a finite number of codes corresponding to each αAβj ,
and each αBβj .

In order to obtain the necessary total a-priori probabilities, let us first con-
sider the intermediate code expressions for αAβj , where βj may be A, B, or C.
From (26), such a code will have approximately the number

6

k = 3 · 4 · 5 · · · (m + r − 1)(m + r) · bm+2 =
bm+2(m + r)!

(r − 1)!
(33)

assigned to it, and the a-priori probability of this code will be approximately

1
k1+δ

=
(

(r − 1)!
(m + r)! bm+2

)1+δ

(34)

The value of bm+2 can be any integer from 1 to m+ r +1. It will be seen that if
we fix the value of bm+2 then there will be just CA! CB ! CC ! · (CA + 1) different
possible intermediate codes that start out with αA. Here CA, CB , and CC are
the number of times that A, B, and C, respectively, occur in α. The reason
for this particular number is that when the hth occurrence of A, say, is being
coded as a pair of integers, there will be only one possible choice for ai, the
first integer, but there will be just h possible choices for bi, the second integer.
Each such choice of bi results in an acceptable intermediate code for the same
sequence. The ai and bi are those of Eq. (21).

The total a-priori probability of all sequences of m + 2 symbols that begin
with αA, and have the same value of bm+2 , will be

CA! CB ! CC ! (CA + 1)
(

(r − 1)!
(m + r)! bm+2

)1+δ

(35)

To obtain the total a-priori probability in the numerator of Eq. (32), we
sum over all possible values of βj and hence over all possible values of bm+2.
The resultant total is

CA! CB ! CC !
(

(r − 1)!
(m + r)!

m+1+r∑

i=1

1
i

)1+δ

· (CA + 1) (36)

The corresponding expression for the denominator of Eq. (32), in which the
(m + 1)th symbol of the coded string must be B, is

CA! CB ! CC !
(

(r − 1)!
(m + r)!

m+1+r∑

i=1

1
i

)1+δ

· (CB + 1) (37)

The relative probability that α will be continued by A rather than B, is the
ratio of (36) to (37), i.e.,

CA + 1
CB + 1

(38)

In the above discussion we let n = 1. If we allow n to have a greater value,
expressions (36) and (37) each are multiplied by the same correction factors,
leaving their ratio (expression (38)), invariant.

It will be noted that expression (38) is identical to that obtained through
“Laplace’s rule of succession.”

7

It may seem unreasonable to go through this rather arduous process to
obtain such a simple result — one that could be otherwise obtained from far
simpler assumptions. However, the present demonstration is an illustration of
the application of a very useful coding method. It is important that this coding
method should give reasonable results in this particular case, since it is later
used as the basis for more complex coding methods. In Section 4.2, we shall
generalize it, so that it may deal with descriptions that utilize definitions of
subsequences that occur with significant frequencies.

For large values of m, it is easy to obtain another interesting property of Eq.
(36). If we take the log2 of (36), and divide by m + 1, we obtain for large m
and small δ, using Sterling’s approximation for X!,

(CA + 1)
m + 1

log2
(CA + 1)
m + 1

+
CB

m + 1
log2

CB

m + 1
+

CC

m + 1
log2

CC

m + 1

This is proportional to Shannon’s expression for the entropy of the sequence,
and has its minimum value when

1 + CA = CB = CC

It is clear, then, that the a-priori probability (36) is minimal when the fre-
quencies of all of the symbols are identical, but that the a-priori probability
increases when there is any deviation from this. We may view the case in which
1 + CA = CB = CC as the “purely random” situation, and any deviation from
this as being a “regularity” in the sequence. Any “regularity” of this sort will
then increase the a-priori probability of the sequence.

The demonstration in this section uses two important approximations —
that of Eq. (26), and the approximation of N(ki,j) by log2 ki,j . Since these
approximations have not been shown to be rigorously applicable to the present
problem, the results obtained must, in turn, be regarded as being of not abso-
lutely certain validity.

4.2 Induction for Sequences with Certain Intersymbol
Constraints

The present section deals with sequences of symbols such as Markov chains,
in which the probability of a particular symbol occurring at a particular point
depends on the nature of symbols in the sequence that are close to it. If the
entire sequence is very short, only very local interactions are considered. For
longer sequences, more distant interactions are automatically considered.

Basically the coding method consists of defining certain sequences of two
symbols — such as AB or DB or AE — to be represented by special single
symbols, such as α, β, or γ. Using these newly defined symbols, the original
sequence can be rewritten more compactly. However, the gain in compactness
may be offset by the amount of information needed to write the definitions of
the sequences defined.

8

The coding method of inductive inference gives a unified measure to the
“increase in compactness” brought about by the introduction of a particular
definition, and includes the cost of defining the new symbol.

The method to be described begins by considering all possible pairs of sym-
bols. The pair for which the total decrease in “coding cost” is maximum is then
assigned a special symbol, and the original sequence is rewritten using this spe-
cial symbol. At the next stage all pairs of symbols (including the newly defined
special symbol) are examined, and the pair for which decrease in coding cost is
maximum is assigned a new special symbol. The sequence that is the result of
the last rewriting is again rewritten using the new symbol.

This process is repeated again and again until it is no longer possible to find
a new definition that results in a further reduction of “coding cost.”

From the compact code that results we are able to find the a-priori prob-
ability of the original sequence. This a-priori probability can then be used to
find the conditional probability of a symbol occurring at a particular point, in
view of the nature of the symbols occurring near it in the sequence.

Section 4.2.1 describes an “intermediate code” in which new symbols are
defined. Each of these new symbols represents a sub-string of symbols of the
original sequence.

Section 4.2.2 shows how a-priori probabilities are to be assigned to these
intermediate codes.

Section 4.2.3 discusses the use of these codes for computing approximate
probabilities. A “hill-climbing” method is described by which codes of high
a-priori probability may be found.

Section 4.2.4 discusses several approximation formulas for the increase in
a-priori probability associated with each possible step on the “hill.”

Section 4.2.5 discusses a computer program that was written to implement
the hill climbing routine of Section 4.2.3.

4.2.1 An Intermediate Code Employing Definitions of
Subsequences

In the present paper we shall consider only definitions that involve the con-
catenation of two symbols. Since either or both of the symbols may in turn
represent a concatenation of two symbols it is clear that we can in this way
define sequences containing any desired number of symbols of the type used in
the original uncoded sequence.

Suppose we have the sequence

CABCBABBABABAAB (39)

Clearly, if we define the symbol α to represent the subsequence AB we can
write (39) more compactly as

CαCBαBααAα (40)

9

However, in order to include all the information in our intermediate code,
we must include the definition in our description of (39). A more complete code
would then be

AB, CαCBαBααAα (41)

Here the comma is a special symbol. It occurs in every intermediate code
once, and only once. There are an even number of symbols before the comma,
and adjacent pairs of these symbols are the definitions of the respective Greek
letters.

The intermediate code
ABαA, CβAαα (42)

would represent the fact that α is defined to be AB, and β is defined to be αA
in the sequence

CβAαα

It is clear, then, that the sequence represented by (42) is

CABAAABAB (43)

4.2.2 Assignment of A-Priori Probabilities to Intermediate Codes

To obtain the a-priori probability of the sequence (43) we will represent its
intermediate code (42) by a (usually large) positive integer in a manner that is
similar to the coding method described in Section 4.1.1.

Let us first number the symbols of (42) so that we may more easily discuss
them.

Symbol Nos.

ABC,

1
A

2
B

3
α

4
A

5
,

6
C

7
β

8
A

9
α

10
α

(44)

The symbols “ABC,” have been written before the sequence proper as we
have done in Section 4.1.1.

In coding the first symbol of (44), we assign an a-priori probability of 1
4 to

the symbol A. This is because there are four previous legal possibilities for that
symbol, and only one of them is “A”. The symbol “,” in this position would
indicate that no definitions were to be made in this intermediate code.

In coding the second symbol “,” is not a possibility since there must be
an even number of symbols in the “definitions” section of our code. The legal
symbol choices occurring before the second symbol are four in number: A, B,
C, and A. Of these, only one is B so we assign an a-priori probability of 1

4 to
B.

Since our first definition is now completed — the definition of α — we have
a new symbol that is now possible. So (44) must be rewritten as

Symbol Nos.

αABC,

1
A

2
B

3
α

4
A

5
,

6
C

7
β

8
A

9
α

10
α

(45)

10

In coding the third symbol “,”and “α” are both legal, so we have seven legal
possibilities, of which only one is α, so we obtain the a-priori probability 1

7 .
To code the fourth symbol we have seven legal possibilities (since “,” is not

legal here). Of these, two are A’s, so we obtain the a-priori probability 2
7 .

In coding the fifth symbol we must rewrite (45) since we have completed the
definition of β, and so β is now a possible choice.

Symbol Nos.

βαABC,

1
A

2
B

3
α

4
A

5
,

6
C

7
β

8
A

9
α

10
α

(46)

For the fifth symbol there are just ten legal previous possibilities. Only one
of them is “,” so its probability is 1

10 .
For the sixth symbol, and all subsequent symbols, “,” is no longer legal

since it can occur only once in the code. Therefore, the probability for the sixth
symbol is 1

9 .
The probabilities of the seventh and eighth symbols are obtained straight-

forwardly — they are 1
10 and 3

11 , respectively.
The ninth symbol brings up an interesting and very important point. If we

have made the definition α ≡ AB, then in our subsequent code, the symbol B
should never follow A, since it would be more economical to rewrite the pair as
α. In general, every definition that we make imposes some constraints on which
symbols may follow which in the subsequent code.

In the present case, the ninth symbol cannot be B or “,”. The resultant
probability is then 2

10 .
The tenth symbol cannot be A since it follows α, and β ≡ αA has been

defined. The probability assigned to the tenth symbol is therefore 3
9 .

The final a-priori probability of the sequence is the product of the individual
probabilities that were described, i.e.,

1
4
· 1

4
· 1

7
· 2

7
· 1

10
· 1

9
· 1

10
· 3

11
· 2

10
· 3

9

4.2.3 Use of the Codes for Prediction

Suppose we have a string of symbols which we will denote by Σ and we want to
know the relative probability of the symbol A rather than B, being the symbol
that follows Σ.

Equation (1) computes this probability ratio by considering all codings of
all possible continuations of the sequences ΣA and ΣB. In general, a given
sequence can be coded in many ways. Various sets of definitions can be used,
and they can be defined in different orders — e.g., AB can be defined before
BC, or vice versa. Also, with a fixed set of definitions, it is often possible to
code a sequence in several different ways. As an example, suppose we have
defined α ≡ AB and β ≡ BC. Then the sequence ABC can be coded as either
αC or Aβ.

An approximation to the desired probability ratio can be obtained by con-
sidering only a few codings of only a few possible continuations of these two
sequences. Greater accuracy will, of course, be obtained if more codings and

11

more possible continuations are considered, and if the coding methods used are
of relatively high a-priori probability.

A computer program has been written for prediction in which only the se-
quences ΣA and ΣB are coded and only one method of coding is used for each
of them. Possible future continuations are not considered.

The input data consists of a sequence of alphabetic symbols. The output
consists of (1) an ordered set of definitions of ordered symbol pairs. (2) the
intermediate code of the original sequence, using these definitions, and (3) the
a-priori probability of that code sequence.

We need only the third of these outputs to make probability estimates. Sup-
pose that for the string of input symbols designated by Σ the machine gives us
a code whose a-priori probability is P (Σ). If the symbols used in the original
sequence are A, B, and C, then an approximation to the probability that A will
be the next symbol to follow the sequence Σ is given by

P (Σ̂A)

P (Σ̂A) + P (Σ̂B) + P (Σ̂C)

Here Σ̂A is the concatenation of Σ and A. An attempt is made to find
codes of very high a-priori probability by a process of “hill climbing” — i.e.,
the original sequence is used as an initial code and improvements are made
in this code so as to increase the a-priori probability. This results in a new
code which is in turn improved. This process of improvement continues until
no new improvements can be found within the set of improvement types being
considered.

In the particular computer program that was used, each “improvement” con-
sists of devising a new binary definition and rewriting the previous intermediate
code using this new definition. If there are r symbol types in the original se-
quence, and c definitions have been introduced thus far, then (r + c)2 possible
definitions are considered. The definition that results in the largest increase of a-
priori probability of the intermediate code is used for recoding. Next, (r+c+1)2

definitions are considered and the optimum one is selected.
The process of determining how much the introduction of a given definition

will increase the a-priori probability of a code has been studied at length. Several
approximate formulas have been obtained for the resultant change in a-priori
probability. The approximations are easily implemented by a digital computer,
so that with an initial symbol string of about 1000 symbols it takes only about
two minutes for the IBM 7090 to find as many as 100 new optimum definitions.

The advantage of the present method of prediction over conventional meth-
ods using the frequencies of n-gm of fixed length, is that the present method is
able to propose rather complex definitions and evaluate their significance on the
basis of a relatively smaller amount of data. Using the same amount of data, the
new method should be able to make better predictions than more conventional
methods.

12

4.2.4 Approximation Formulas for Hill Climbing

In general, there are two situations in which it is useful to define the subsequence
AB.

In the first kind of situation, we have a long uncoded sequence in which the
subsequence AB never (or very infrequently) occurs. Defining the pair AB will
then increase the a-priori probability of the resultant intermediate code. This
is because of increased knowledge of symbols following A’s due to the fact the
B’s are impossible there. This knowledge results in greater probabilities being
assigned to the symbols that actually do follow A in the intermediate code.

In the other possible situation, B almost always follows A whenever A oc-
curs. We can then increase the a-priori probability of our intermediate code
by defining AB, because the symbol α will have a greater probability than the
product of the probabilities of the symbols A and B.

If fA and fB are the respective relative frequencies with which the symbols
A and B occur in a long, uncoded sequence, and fAB is the relative frequency
of the subsequence, AB (relative frequency is in all three cases measured with
respect to the total number of single symbols in the sequence), then the ratio
of total increase in a-priori probability of the intermediate code resulting from
our formulating the definition α ≡ AB, is roughly approximated by

fA · fB exp

[
mfAB

2

(
fA · fB

fAB
− 1

)2]
(47)

Here, m is the number of symbols in the original sequence and so mfAB is the
number of times AB has occurred.

We will want to consider defining α ≡ AB, if this definition gives us an
intermediate code of higher a-priori probability — i.e., if expression (47) is
greater than unity.

It is of value to regard expression (47) as composed of two factors. First
the factor fA · fB , which is the cost (in probability) of writing the definition
α ≡ AB. Next, the factor

exp

[
mfAB

2

(
fA · fB

fAB
− 1

)2]
(48)

which tells us how much benefit is obtained from the definition increasing the
probabilities of various symbols.

In (48) note the presence of the expression

(
fA · fB

fAB
− 1

)2

This indicates that if there is any constraint between the symbols A and B, so
that fAB 6= fA · fB (i.e., A and B are not “independent”), then, if our sequence
is long enough, (i.e., m is large enough) expression (48) will become very large
— so that we will save more than we lose by defining α ≡ AB.

We may write (48) as

13

{
exp

[
fAB

2

(
fA · fB

fAB
− 1

)2]}m

Here it becomes clear that no matter how much A and B appear to be
dependent (i.e., that fAB differs very much from fA · fB), it will not be worth
while to define α ≡ AB unless the sequence is long enough to give us an adequate
“sample size” (i.e., m is large enough). Conversely, even if A and B are only
very slightly dependent, it will be worth while to define α ≡ AB if m is large
enough.

Also note that if A and B are rather uncommon symbols (i.e., fA and fB are
small) the cost of defining AB is very important (i.e., fA · fB is much smaller
than unity), so that the other factor, (48), has more “work” to do.

In general, in the “coding method of inductive inference,” it will often be
possible to divide the coding effects of a supposed “regularity” in a body of data
into a part that corresponds to the cost of defining the regularity, and a part
that tells how much we increase the a-priori probability of the code by using
this regularity in recoding the data. In Eq. (47) these parts are exemplified by
fA · fB and by expression (48), respectively.

It should be noted that the approximation expression (47) does not work
well for very small values of fAB , and no conclusions should be drawn about
this case from this particular approximation.

Expressions (49) and (50) are more exact expressions for the ratio of increase
of a-priori probability of an intermediate code that results from defining α ≡
AB. These expressions were the ones used in the computer program. Expression
(49) is for the case A 6≡ B, and (50) is for the case A ≡ B — i.e., α ≡ AA.
Although both expressions are approximations, they work very well, even when
NAB = 0 or NAA = 0.

(NA −NAB + 1)!(NB −NAB + 1)! · (m + r + c− 1)!NAB !(r + 3c)
N4!NB !(m + r + c−NAB + 2)!

·
(

m + r + c−NAB + 3
m + r + c−NB + 1

)NA−NAB

(49)

(NA − 2NAA + 2)!NAA!(m + r + c− 1)!(r + 3c)
NA!(m + r + C −NAA + 2)!

·
(

m + r + c−NAA + 3
m + r + c−NA − 1)

)NA−2NAA

(50)

m is the total number of symbols in the original sequence. r is the number of
different symbol types in the original sequence. c is the number of definitions
that have been already introduced. NA is the number of times “A” occurs in the
code sequence (or original sequence) being recoded. NB is the corresponding

14

number for “B”. NAB is the corresponding number for the subsequence “AB.”
NAA is the corresponding number for the subsequence “AA.”

Here NAA is defined to be the largest number of non-overlapping “AA’s”
that can be found in the sequence of interest.

In expression (49), the factor

(
m + r + c−NAB + 3
m + r + c−NB + 1

)NA−NAB

(51)

gives the amount of increase in a-priori probability due to symbols following A
having somewhat greater probability than before — since it is now known that
B cannot follow A. This factor is but an approximation, and assumes that this
increase in probability is the same for each of the NA−NAB occurrences of “A”
in the new code. The rest of expression (49) is exact, however. Corresponding
remarks are true of expression (50).

4.3 The Use of Phrase Structure Grammars in Coding for
Induction

The present section deals with the extrapolation of sets of strings in which the
constraints among the symbols are somewhat like those that exist among the
words of sentences in European languages.

More specifically, suppose we are given an unordered set of strings, [αi],
(i = 1, 2 · · ·n), and we want the relative probability that the new string β1,
rather than the new string β2 “belongs” to the set.

The method that will be used is equivalent to finding a PSL (context free
phrase structure language, Chomsky (1956)) that in some sense best “fits” the
set [α1]. The measure of goodness of fit will be the product of the a-priori prob-
ability of the language selected and the probability that the language selected
would produce [α1] as a set of acceptable sentences.

The a-priori probability of a PSL will be obtained by writing its grammar as
a string of symbols, and using any of the induction techniques of Section 3 on
this string. The probability that a given PSL produced [α1], is a concept that
is less clearly defined.

Solomonoff (1959) discusses the concept of “stochastic languages,” i.e., lan-
guages that assign a probability to every conceivable string rather than the
acceptance or rejection which is assigned by ordinary formal languages.

As an example, consider the PSL described by Solomonoff (1959, Appendix
II) using a somewhat modified notation. The initial symbol is Σ and the per-
missible substitutions are:

Σ −→ αβ α −→ αΣC β −→ Cα
Σ −→ βD α −→ Cβ β −→ B

α −→ A
(52)

Here we read “Σ −→ αβ” as “Σ may be replaced by αβ.” A permissible
derivation of an acceptable sentence is:

15

1. Σ 5. CCCββ
2. αβ 6. CCCBβ
3. Cββ 7. CCCBCα
4. CCαβ 8. CCCBCA

The last string of symbols, CCCBCA, is an acceptable sentence, since we
can make no further substitutions in it.

It will be noted that for each of the symbols Σ, α, and β, there is more than
one substitution possible. By assigning probabilities to each of these substitu-
tions, we describe a stochastic phrase structure grammar. A possible assignment
of probabilities in the previous grammar is

Σ −→ αβ, 0.1 α −→ αΣC, 0.2 β −→ Cα, 0.3
Σ −→ βD, 0.9 α −→ Cβ, 0.2 β −→ B, 0.7

α −→ A, 0.6
(53)

The number written after each substitution rule is the probability value as-
signed to that substitution. In the derivation of the sentence CCCBCA the
substitutions Σ −→ αβ, α −→ Cβ, β −→ Cα, α −→ Cβ, β −→ B, β −→ Cα,
and α −→ A were used in that order. These substitutions have the respective
probabilities of 0.1, 0.2, 0.3, 0.2, 0.7, 0.3, and 0.6. The resultant probability of
this particular derivation of the sentence CCCBCA is:

0.1× 0.2× 0.3× 0.2× 0.7× 0.3× 0.6 = 0.0001512

One way to assign an a-priori probability to a stochastic phrase structure
language is to first assign an a-priori probability to the corresponding ordinary
phrase structure language. Associated with each such ordinary language is a
continuous multidimensional space of stochastic languages, each point of which
corresponds to a set of possible values of the substitution probabilities. We may
assume a uniform a-priori probability distribution over this space.

The problem of assigning an a-priori probability to a stochastic phrase struc-
ture language thereby becomes one of assigning an a-priori probability to the
corresponding ordinary phrase structure language.

Solomonoff (1959) did not propose any particularly good methods for assign-
ing a-priori probabilities for PSG’s. The methods to be described in the present
section can, however, be used to find these a-priori probabilities. If these a-priori
probabilities were used with the techniques described by Solomonoff (1959, Ap-
pendix II), the resultant induction probabilities would be identical to those
obtained in the present section.

4.3.1 Generation of the Codes and Their Use for Probability
Evaluation

Consider the PSG of Section 4.3.

16

A permissible derivation of the acceptable sentence, CCCBCA was given in
Section 4.3. We can also show this derivation by means of the tree:

Σ
|

αβ
/ \

Cβ Cα
| |

Cα A
|

Cβ
|
B

(54)

We can write the complete grammar more compactly in the form of the
string

aβ, βD; αΣC, Cβ, A;Cα, B; (55)

The two groups of symbols before the first “;” are possible substitutions for
Σ. The groups up to the next “;” are the possible substitutions for α, and the
next group are possible substitutions for β.

Given the grammar of (55), let us now write a code string for the set of two
sentences, CCCBCA and CABDCD. The derivation of the first of these is
given by (54). The second is given by the tree:

Σ
↓

βD
↓
Cα
↓

αΣC
↙ ↓

A βD
↓
B

(56)

The first symbol in the code for CCCBCA, using derivation (54), is Σ1.
This indicates that the first substitution for Σ was used. From the notation Σ1
alone, we know that the sentence must be out of the form αβ.

The next symbol tells which substitution to make in the leftmost substi-
tutable symbol of the sequence, αβ. The notation α2 indicates that the second
substitution for α (i.e., α −→ Cβ) is to be made.

The code sequence Σ1α2 indicates that the sentence is of the form Cββ.

17

Σ1α2β1 is the intermediate code for CCαβ. Again, the newest symbol, β1,
gives the substitution for the leftmost substitutable symbol in Cββ (whose code
is Σ1α2).

Continuing, we have the following set of intermediate codes and partially
coded strings:

Σ1α2β1α2 ; CCCββ
Σ1α2β1α2β2 ; CCCBβ
Σ1α2β1α2β2β1 ; CCCBCα
Σ1α2β1α2β2β1α3 ; CCCBCA

After CCCBCA has been entirely coded, it is clear that any further symbols
in the code will be for the code of the next sentence. Proceeding as before, to
code both CCCBCA and CABDCD using for the derivation of CABDCD the
tree of (56):

Σ1α2β1α2β2β1α3Σ1 ; CCCBCA, βD
Σ1α2β1α2β2β1α3Σ1β1 ; CCCBCA,CαD
Σ1α2β1α2β2β1α3Σ1β1α1 ; CCCBCA,CαΣCD
Σ1α2β1α2β2β1α3Σ1β1α1α3 ; CCCBCA,CAΣCD
Σ1α2β1α2β2β1α3Σ1β1α1α3Σ2 ; CCCBCA,CAβDCD
Σ1α2β1α2β2β1α3Σ1β1α1α3Σ2β2 ; CCCBCA,CABDCD

Our intermediate code for the pair of sentences CCCBCA and CABDCD
is then:

αβ, βD; αΣC,Cβ,A; Cα,B; Σ1α2β1α2β2β1α3Σ1β1α1α3Σ2β2 (57)

To compute the a-priori probability of (57) we will use techniques similar to
those of Sections 4.1.1, 4.1.2, 4.2.1, and 4.2.2.

To code (57), first write the alphabet symbols, preceded by αΣ and followed
by “;”.

αΣABCD; (58)

The symbols of (58) are the only legal initial symbols of an intermediate
code, The symbol “;” at the beginning would indicate that no definitions were
to be used in the code — that the code was for a Bernoulli sequence as in the
sections following (4.1).

The first symbol of a more final code for (57) is the integer “1,” indicating
the first symbol of (58). The probability of this symbol is 1

7 , since 6 other choices
are also legal.

We now rewrite (58) as:

βαΣABCD, ; α (59)

Now, β, “,” and “;” are all legal possibilities. The code for β, the second
symbol of (57) is the integer 1, since β is the first symbol of (59), and its
probability is 1

10 since there are 9 other legal choices.

18

We now rewrite (59) as:

γβαABCD, ; αβ (60)

The third symbol of (57), i.e., “,” is coded by the integer 9, and is given the
probability 1

12 .
We now rewrite (60) as:

γβαΣABCDαβ, (61)

The “,” and “;” are omitted here, since neither “,” nor “;” can follow “,”
immediately. Also, neither “,” nor “;” can follow “;” immediately. These are
the only constraints that we will use in coding the first 20 symbols of (57), i.e.,
the “grammar part” of (56).

For β, the fourth symbol of (57), either 2 or 10 may be used, so the proba-
bility of β is 2

11 .
Using the above methods, we can code up to the rightmost “;” of (57) to

obtain the a-priori probability of the pure grammar string (55). By inspection
of the string (55), it is clear that the only symbols that can follow are:

Σ1,Σ2, α1, α2, α3, β1 and β2 (62)

String (55) could not be followed by more grammar symbols since any new
grammar symbols could only serve to define the possible substitution of γ. This
would be pointless since γ is not referred to in any of the previous substitutions
so there would never be any need to know what its permissible substitutions
are. Another way to look at this is to note that there is no chain of conceivable
substitutions by which one could start with the symbol Σ and eventually get to
a string containing the symbol γ.

To code the part of (57) that follows the grammar description (55) we start
by listing the legal symbols, i.e.,

Σ1Σ2α1α2α3β1β2 (63)

The subsequence Σ1 is to be regarded as a single symbol, as are Σ2, α1, etc.
The code for Σ1 — the first symbol to follow the (56) subsequence of (57)

— is 1, since Σ1 is the first symbol of (63). Its probability is then 1
2 , since Σ1

and Σ2 are the only possible symbols at that point. So we write (63) followed
by Σ1.

Index No. 1

Σ1Σ2α1α2α3β1β2Σ1
Code No. 1

(64)

The 1 above the terminal symbol of (64) indicates that this Σ1 is the first
symbol of the latter part of (57).

To code α2, the next symbol of (57), we use the symbol 2 since α2 is the
second of the three legal possibilities — i.e., α1, α2, and α3. Its probability is
1
3 .

19

Index Nos.

Σ1Σ2α1α2α3β1β2
Code Nos.

1

Σ1
1

2

α2
7

(65)

In expression (66) we have written the nongrammar part of (57), preceded
by (63). The numbers above the latter terms of (66) are simply to be used to
refer to the various symbols. The number or numbers below each such term
give the code representation or representations. Above the index number of
each symbol is written its probability:

Probability 1
2

1
3

1
2

2
4

1
3

2
4

1
5

2
3

3
5

1
6

2
7

1
4

2
6

Index Nos. 1 2 3 4 5 6 7 8 9 10 11 12 13

Σ1Σ2α1α2α3β1β2 Σ1 α2 β1 α2 β2 β1 α3 Σ1 β1 α1 α3 Σ2 β2
Code Nos. 1 2 1 2 2 1 3 1 1 1 3 2 2

4 3 3 3 6 4

5

(66)
For an example, let us take the eleventh term, α3. The only possible legal

symbols at that point, are α substitutions, so α1, α2 and α3 are the only
possibilities. The previous set of α substitutions listed are:

Index Nos.

α1α2α3
2

α2
4

α2
7

α3
10

α1
(67)

The third of sequence (67) and the sixth of that sequence are both α3, so 3
and 6 are both legal codes for α3 at this point.

There are 7 symbols in the sequence (67) so the probability of a3 is just 2
out of 7 or 2

7 .
The other probabilities in (66) are computed similarly. The final probability

to be associated with expression (57) is the product of the probabilities obtained
in (66) and the probabilities previously obtained in coding the pure grammar
string (55).

If it is desired, the methods just discussed can be used to assign large integers
to each possible code representation. This process would follow the techniques
discussed in Section 4.1.1.

It must be noted that the probability obtained in this way will be that
associated with a particular grammar and a particular pair of derivations for
the two sentences of interest. To obtain the total probability of these sentences
with respect to a particular grammar, it is necessary to sum the probabilities
of all possible pairs of derivations for them.

To obtain the total probability of the two sentences with respect to all possi-
ble grammars, it is necessary to sum the probabilities over all possible grammars
and sets of derivations.

It is probably possible, however, to make satisfactory predictions by using
only the “best” grammar and its derivations. This corresponds to predicting
using the single “best fitting” model or hypothesis, as is very often done. An

20

example is that of fitting curves to empirical data, in which the single “best
fitting” curve is used to make predictions.

The use of string (57) to code the two strings

CCCBCA, CABDCD (68)

and thereby obtain the probability as described would seem to be a rather long
way to go about it. Would it not be far easier to code the two strings of (68)
as a Bernoulli sequence, and would not the resultant code be shorter and have
a higher probability associated with it?

The answer to both of these questions is “yes.”
The two strings of (68) would not best be coded using the complex PSG of

(55). The particular example of strings and grammar used to code them were
taken to illustrate the coding method and the method of probability assignment.
The problem of finding a grammar that can best be used to describe a set
of strings (i.e., that results in a description having highest possible a-priori
probability) will be discussed in the next section.

4.3.2 A Criterion for “Goodness of Fit” of a PSG to a Particular
Set of Strings

In general, the problem of finding the PSG that “best fits” a given set of “accept-
able sentences” is not a well defined problem. There are at least two grammars
that will always “fit” the sentences in question. The first grammar, which we
will call the “promiscuous grammar”, is one in which all sequences of symbols
drawn from the alphabet are acceptable. For the alphabet of symbols 0, 1, one
such grammar is the PSG

Σ → Σα α → 0
Σ → α α → 1 (69)

In more compact notation it is:

Σα, α; 0, 1; (70)

The second type of grammar which we will call the “ad hoc grammar” is the
one in which only the given symbol sequences are acceptable sentences and no
others. A PSG of this sort for the acceptable sentences

10110 and 001111 (71)

is

Σ → 10110
Σ → 001111 (72)

In more compact form, the description of the two strings is

10110, 001111; Σ1Σ2 (73)

21

These two kinds of grammars are both incapable of making any useful extrap-
olations. The formal reasons for their inacceptability are, however, different. If
there is a large number of strings that we want to fit the grammar to, then using
the promiscuous grammar (70) to help describe this set will result in a grammar
string of high a-priori probability (i.e., the grammar is “simple”), followed by
a descriptive string that is quite long and is of low a-priori probability. The
product of these two probabilities is ordinarily much lower than the probability
obtained by using the “optimum” grammar for description.

On the other hand, the ad hoc grammar of (72) is rather “complex” — it
has a low a-priori probability — while the rest of the descriptive string of (73),
i.e., Σ1Σ2, is short and has high a-priori probability. The product of these
two probabilities is again usually much lower than would be the corresponding
quantity, using a more “optimum” grammar for description.

We will use the product of these two probabilities (i.e., the a-priori proba-
bility of the resultant description) as an approximate criterion of “goodness of
fit” of the PSG in question to the given set of strings. A more exact criterion
would sum over the probabilities of all possible sets of derivations with respect
to the given PSG.

In the following examples, the corpus will only have one set of derivations
with respect to the grammars being considered, thus simplifying the discussion
somewhat. It should be noted that this situation will not occur when more
complex PSG’s are considered.

Consider the grammar

Σ → 0Σ1
Σ → 01 (74)

All acceptable sentences will be of the form 0(n)1(n) — which is a sequence
of n0’s followed by a sequence of n1’s. Consider the set of strings:

01, 0011, 00001111, 0000011111 (75)

We will use three different grammars to describe (75). First the promiscuous
grammar (70), then an ad hoc grammar like (72), then its “proper” grammar
(74). It will be seen that the description via (74) is of much higher a-priori prob-
ability than those corresponding to the other two descriptions. Furthermore,
the “degree of betterness” of this description would increase if more strings were
added to (75).

Consider first the description via the promiscuous grammar.
Our intermediate code starts with the grammar string of (70). This is fol-

lowed by Σ1Σ2α1α2 which describes 01. Next comes Σ1Σ1Σ1Σ2α1α1α2α2
which describes 0011. Next comes (Σ1)(7)Σ2(α1)(4)(α2)(4) which describes
0(4)1(4). Finally comes (Σ1)(9)Σ2(α1)(5)(α2)(5), which describes 0(5)1(5).

The probability assigned to the grammar string of (70) is

1
5
· 1

7
· 1

8
· 1

3
· 1

10
· 1

7
· 1

6
· 1

8
· 1

7
(76)

22

In (77) we have written the probability below each of the corresponding
grammar symbols.

1 2 3 4 5 6 7 8 9

αΣ01, ; Σ α , α ; 0 , 1 ;
1
5

1
7

1
8

2
6

1
10

1
7

2
12

1
8

2
14

(77)

The rest of the description consists of a sequence of Σ1’s, Σ2’s, α1’s, and
α2’s. The a-priori probability of this part is the same as that which would be
obtained by considering it to be two Bernoulli sequences — one containing only
the symbols Σ1 and Σ2, the other containing only α1, and α2.

The first Bernoulli sequence contains 20 Σ1’s and 4 Σ2’s. Its probability is:

(2− 1)! 20! 4!
(2− 1 + 20 + 4)!

(78)

The second Bernoulli sequence has 12 α1’s and 12 α2’s. Its probability is:

(2− 1)! 12! 12!
(2− 1 + 12 + 12)!

(79)

Expressions (78) and (79) are similar to expressions (35) and (66) and are
obtained using similar reasoning. The final probability obtained for the descrip-
tion of (75) using the promiscuous grammar is the product of the probabilities
(76), (78), and (79) — which is approximately 2.3× 10−21.

Let us now describe (75) using an ad hoc grammar, i.e.,

01, 0011, 00001111, 0000011111; Σ1Σ2Σ3Σ4 (80)

The first part of the description of (80) is obtained by first writing the legal
symbol string , ; Σα01, followed by (75).

Index nos.

, ; Σα01
1

0
2

1
3

,

4

0
5

0
6

1
7

1
8

,

9

0
10

0
11

0
12

0
13

1
14

1
15

1
16

1
17

,

18

0
19

0
20

0
21

0
22

0
23

1
24

1
25

1
26

1
27

1
28

;
(81)

In giving probabilities to the first 28 symbols of expression (80), the process is
identical to that used in coding a Bernoulli sequence with the 6 symbol alphabet

, ; Σα01

except that the 4th, 9th, and 18th factors have denominators that are two
smaller than in the Bernoulli Sequences and the first factor has a denominator
that is one smaller. This is because the symbol “,” is not legal in all four of
those positions and “;” is not legal in three of them.

The resultant probability is:

(6− 1)! 3! 1! 0! 0! 12! 12!
(6− 1 + 3 + 1 + 0 + 0 + 12 + 12)!

1 + 6
1 + 6− 1

· 4 + 6
4 + 6− 2

9 + 6
9 + 6− 2

18 + 6
18 + 6− 2

(82)

23

The last four factors of (82) are corrections due to the constraints existing
in the coding of the first, fourth, ninth and eighteenth symbols.

Treating the sequence Σ1Σ2Σ3Σ4 as a Bernoulli sequence, we obtain for it
the probability

1
4
· 1

5
· 1

6
· 1

7
(83)

The final probability of the description of (75) using the grammar

01, 0011, 00001111, 0000011111;

is the product of expressions (82) and 83), which is approximately 3.8× 10−23.
Let us now describe (75) using the grammar of (74) . The entire description

is

0Σ1, 01;Σ2Σ1Σ2Σ1Σ1Σ1Σ2Σ1Σ1Σ1Σ1Σ2 (84)

The probability of

0Σ1, 01; (85)

is obtained by first writing it as

αΣ, ; 01
1

0
2

Σ
3

1
4

,

5

0
6

1
7

;
(86)

The product of the probabilities for the various symbols give the probability

1
5

1
7

1
8

1
9

2
8

2
11

1
12

(87)

for (85).
The sequence Σ2Σ1Σ2Σ1Σ1Σ1Σ2Σ1Σ1Σ1Σ1Σ2 contains 8 Σ1’s and 4 Σ2’s.

Its probability is therefore

(2− 1)! 8! 4!
(2− 1 + 8 + 4)!

(88)

The final probability of the description of (75) using the correct grammar,
(74), is then the product of expressions (87) and (88), which is approximately
9× 10−11.

Let us compare the probabilities obtained via the three grammar types:
1. The promiscuous grammar: 2.3× 10−21

2. The ad hoc grammar: 3.8× 10−23

3. The “correct” grammar: 9× 10−11

It is seen that the probability via the “correct” grammar is much greater
than the probabilities via the other two. In particular, the probabilities via the
first two grammars are very roughly the square of that of the third. This is to
a large extent due to the fact that the first two grammars each require about

24

twice as many decisions to be made in their description, as are made in the
third grammar.

If we were to forsake PSG’s entirely in describing (75) and were to describe
it as a Bernoulli sequence with the constraint that the first, fourth, ninth, and
eighteenth symbols cannot be “,”, the probability assignment would be roughly
4.5× 10−13. About as many decisions have to be made as in either of the first
two grammars, but each decision is given a higher probability since there are
usually not as many alternative choices.

4.3.3 How to Find a PSG That Best “Fits” a Given Set of Strings

In the previous section we had shown how to obtain a probability from a given
set of strings, a PSG that could have produced these strings, and a set of legal
derivations of the strings from the grammar rules.

From a formal point of view, this solves the problem of obtaining a PSG of
optimum fit (i.e., highest probability), since we can order all PSG’s and their
derivations (if any) of the set of strings. We can then find the probability of each
PSG, by summing over the probabilities of each of its possible derivations of the
set of strings. The PSG of maximum probability may be then selected and used
for extrapolation. More exact extrapolations can be obtained by considering
all PSG’s whose fit is close to that of the “best” PSG. A weighted average of
the extrapolations associated with each possible grammar must be used. The
weight of a PSG is proportional to the “goodness of fit” of that grammar to the
known corpus.

This is not, however, a practical solution. The problem of finding a set of
PSG’s that “fits well” cannot be solved in any reasonable length of time by
ordering all PSG’s and sets of derivations, and testing each PSG in turn.

A method that appears to hold some promise of finding a well fitting gram-
mar utilizes a method of digital “Hill climbing” not unlike that used in Section
4.2.3.

We start out with a particular PSG description of the set of sentences —
in the cases that have been investigated, the ad hoc grammar was used. A
probability is assigned to this description using the methods of Section 4.3.2.

Next, a set of possible “mutations” of the description are considered that
leave the set of strings described invariant. Such possible modifications involve
the defining of new intermediate symbols in the grammar, the modification or
elimination of various grammar rules, etc. Of the set of mutations considered,
one is selected that increases the entire description probability most (i.e., it
most simplifies the description), and the corresponding modification is made in
the description.

From this new description, a new set of mutations are tried and the “best”
one is retained. This process of successive mutation and selection is continued
until a maximum is reached — at which point the resultant grammar is retained.

For an example of a “mutation,” consider the set of strings (75), as described
by the ad hoc grammar, i.e., expression (80). We can make a mutation by

25

“factoring out” the symbol 0 from the lefthand side of each of the strings to
obtain the description

0α; 1, 011, 0001111, 000011111;Σ1α1Σ1α2Σ1α3Σ1α4 (89)

This description must be evaluated to see if it has a higher probability than
that of (80). (It should be noted that each occurrence of Σ1 in (89) is of
probability 1 and so these Σ1’s may be considered redundant.)

Other mutations can be devised, utilizing various of the “factoring” and
“inclusion” rules discussed by Solomonoff (1960).

The effectiveness of such a “Hill climbing” technique rests largely upon what
kinds of mutations are considered in each step. Selection of suitable mutations
will also prevent, to some extent, one’s getting stuck at “local maxima” rather
than reaching the highest point of the “hill.”

Another technique of dealing with local maxima is to select the 10 (say)
best mutations at each step and proceed with the next set of mutations, always
retaining the 10 best descriptions thus far and using them as bases for mutations.

At the present time, a set of mutation types has been devised that makes
it possible to discover certain grammar types, but the effectiveness of these
mutation types for more general kinds of grammars is as yet uncertain.

4.3.4 A Criticism of the PSG Coding Method

In the coding method of Section 4.2, subsequences of unusually low frequency
are recognized, and given definitions, thereby increasing the probability of the
resultant code. This is accomplished by the equivalent of certain “parsing con-
straints” so if α ≡ AB has been defined, the sequence AB can only occur as a
case of α.

In the PSG coding method that has been described, there are no such “pars-
ing constraints,” and as a result, there is no good way to take advantage of the
fact that a certain subsequence occurs with an unusually low frequency.

It is hoped that further investigation will make it possible to remove this
apparent deficiency from the present PSG coding method.

5 Use of the Theory for Decision Making

It is possible to use the probability values obtained through the present the-
ory to make decisions in a variety of ways (Luce and Raiffa (1957), Solomonoff
(1957)). Van Heerden (1963) has devised a theory of decision making using of
many heuristic arguments that are applicable to the presently described induc-
tion theory. He makes decisions as though the prediction given by “the best
prediction operator” would indeed occur. “The best prediction operator” is de-
fined to be the one for which the number of bits in the operator’s description
plus the number of bits in its past errors of prediction is minimum.

26

In the terms of the present paper, this is equivalent to making predictions
on the basis of the shortest description of a corpus and disregarding all other
descriptions.

The essential arbitrariness in his theory arises through the arbitrary choice
of a language to describe operators. In the present induction theory this corre-
sponds to the arbitrary choice of a universal machine.

RECEIVED: May 24, 1962

REFERENCES

Chomsky, N. (1956), “Three models for the description of language.” IRE
Trans. Inform. Theory, Vol IT–2, 113–124.

Keynes. J. M. (1921), “A Treatise on Probability.” Chap. XXX. Macmillan,
New York.

Luce. R. D. and Raiffa, H. (1957), “Games and Decisions.” Wiley, New
York.

Solomonoff, R. J.(1959), “A Progress Report on Machines to Learn to Trans-
late Languages and Retrieve Information.” pp. 941–953. Advances in Doc-
umentation and Library Sciences, Vol III, Part 2. Interscience, New York.
AFOSR TN-59-646 (Contract AF 49(638)-376); ZTB–134.

Solomonoff, R. J. (1960), The Mechanization of Linguistic Learning. Proc.
Second Intern. Congr. Cybernetics, Namur, Belgium, September, 1958, pp.
180–193. AFOSR TN-59-246 (Contract AF 49(638)-376); ASTIA AD No. 212
226; ZTB–125.

Van Heerden, P. J. (1963), “A General Theory of Prediction.” Polaroid
Corp. Cambridge 39, Mass. (Privately circulated report).

27

