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Abstract. A computer disk drive's motor speed varies slightly but irreg-

ularly, principally because of air turbulence inside the disk's enclosure.

The unpredictability of turbulence is well-understood mathematically; it
reduces not to computational complexity, but to information losses. By

timing disk accesses, a program can e�ciently extract at least 100 inde-

pendent, unbiased bits per minute, at no hardware cost. This paper has
three parts: a mathematical argument tracing our RNG's randomness

to a formal de�nition of turbulence's unpredictability, a novel use of the

FFT as an unbiasing algorithm, and a \sanity check" data analysis.

1 Introduction

Secure PRNG design commonly rests on computational complexity [2, 5, 6, 13,
24], but none of the underlying problems has been proven to be hard. Specialized
hardware can provide naturally random physical noise, but has disadvantages:
dedicated devices tend to be expensive; natural noise tends to be biased and
correlated; hardware failure can silently suppress randomness; and physical ran-
domness is only an article of faith. Our random number generator, which is
based on disk-speed variations,4 addresses each of these problems. Timing data
are very low-cost, easily whitened, reliable, and mathematically noisy.

I/O randomness is well-known in cryptography [17], and a spinning-disk RNG
was used even 50 years ago [11]. Still, our approach is subtly novel, because a disk
drive combines three important features most economically. First, the OS detects
and reports disk faults, so that silent randomness failures are unlikely. Second,
unlike most other I/O devices, the disk can be secured from outside inuence
and measurement. Last, nonlinear dynamics gives us an a priori mathematical
argument for our generator's randomness. This has not been possible for other
noise sources, which rely on a posteriori statistical measurements.

This paper has three parts. First, we trace the disk's speed-variations to
air turbulence, and we show why these variations can show only short-term
correlations. Second, we show that the FFT removes bias and correlations from
the disk's timing-data. Third, we describe our \sanity check" analysis of some
timing-data and the resulting random numbers.

? A�liations during this work: MIT Project Athena, MIT Stat. Ctr., MIT LCS, resp.
4 Disk drives use brushless DC motors [10, 18], so these speed variations are indepen-

dent of the AC line frequency.



2 Turbulence in Disk Drives

In this section, we review studies demonstrating turbulent air ow in disk drives.
Oversized mockups have clari�ed the various turbulent ow regimes inside a disk
drive, and have shown how rotational speed, disk spacing, and cooling ow a�ect
the ow [1]. The apparatus was a stack of 1-meter glass disks, spun in a water
tank at low speeds (5 { 60 rpm). A close-�tting cylindrical shroud enclosed
the disks, and 50 cm.-diameter hubs separated them, to closely model typical
modern disk drives of various sizes. Dye and bubbles made the ows visible, and
a rotating video camera recorded the results. Our disk's speed and con�guration
were similar to those studied.

Turbulence arose at the read/write heads and their support arms, in Coriolis
circulation between the disk surfaces, and in Taylor-Couette ow at the disks'
rims. Crucially, the T-C ow pumped turbulence into the Coriolis ow. Numer-
ical simulation of disk ow showed similar turbulence patterns [21], and yielded
an estimate of 3% for the consequent uctuations in the windage torque. This
is clearly large enough to inuence the disk's speed.

Spectral measurements of the uid velocity showed both sharp peaks and
broadband features [1], reecting weak turbulence: very noisy motion with a
periodic component [3]. The spectra were taken at various rotational speeds,
but the peaks always contained only a small proportion of the spectral power,
rising only a factor of 2{3 above the white-noise background. This broadband
spectral component was maximized at Reynolds numbers near those commonly
found in disk drives.

The classic Taylor-Couette (T-C) ow experiment models a disk drive's dom-
inant turbulence pretty well: a tall cylinder spins inside a uid-�lled glass sleeve,
which displays the uid's toroidal convection. Laser-D�oppler velocimetry exper-
iments have precisely measured the uctuating convection in T-C ow [9]. The
ow changed from periodic to quasiperiodic, and then abruptly to weakly tur-
bulent, as the uid's velocity was gradually increased. This development was
consistent with a formal model of weak turbulence in simple quasiperiodic sys-
tems:

Theorem1 (Newhouse, Ruelle, Takens, 1978 [14]). \Let v be a constant vector

�eld on the torus Tn = IRn=ZZn. If n � 3, every C2 neighborhood of v contains

a vector �eld v0 with a strange Axiom A attractor. If n � 4, we may take C1

instead of C2."

Here, the torus Tn does not represent the toroidal T-C vortices directly, but is
a simple dynamical system's phase space. \Axiom A"5 refers to a formal de�ni-
tion of dynamical systems that show a close mixture of periodic and turbulent
behavior. (For the de�nition of Axiom A ows and attractors, see [15].)

5 The �nite-dimensional Axiom A formalism can't apply directly to Navier-Stokes

in�nite-dimensional phase ows. The machinery of inertial manifolds, though, has

shown that bounded-velocity ows have �nite-dimensional attractors [20].



Even weak turbulence is su�ciently random for our purposes, because it
shows sensitive dependence on initial conditions (SDIC). (Theorem 1's Axiom A
result implies SDIC.) Somewhat formally, a phase-space ow ft : S �! S has the
SDIC property if 9 an attractor A � S s.t. 8x 2 A, 8 small U 3 x, the diameter
of ft(U ) increases exponentially with time [15]. Informally, to completely forecast
a system that shows SDIC, we must specify its parameters and initial conditions
with in�nite precision; measurement limitations limit the forecast to short-term
accuracy [3]. Thus, it is not computational complexity, but information losses in

measurement, that prevent e�ective prediction in such physical systems.

3 Converting Access-Times to Random Numbers

In Section 2, we showed that the disk's speed variations show sensitive depen-
dence on initial conditions (SDIC). Even so, the disk's access-times are still
strongly structured, biased, and correlated, so they clearly cannot directly simu-
late a tossed coin. Some solutions to this problem [4, 23] make assumptions that
don't �t our noise source. Semi-randomness [16, 22, 8] successfully formalizes
imperfect randomness, but is restrictively pessimistic because it requires two
sources. This motivates our use of the FFT. In this part of our paper, we show
that the FFT is a good unbiasing algorithm, and that SDIC justi�es this use of
the FFT. In presenting these results we follow Brillinger [7].

Let (X1; : : : ; Xk) be a vector of random variables. The joint cumulant of kth
order, cum (X1; : : : ; Xk), is de�ned as the coe�cient of ikt1 : : : tk in the Taylor
series expansion of the logarithm of the characteristic function of (X1; : : : ; Xk)

about the origin. For a stationary time-series Xt with E jXtj
k
< 1, we de�ne

the joint cumulant function of order k to be

cX:::X(t1; : : : ; tk�1) = cum(Xt1 ; : : : ; Xtk�1 ; X0) (1)

The cumulant is thus the mean of a polynomial function of k staggered copies
of the time-series Xt, and its parameters ti describe the copies' o�sets. The
cumulants represent the dependencies present inXt. The requirement that these
dependencies fall o� over time is known as a mixing condition. Our use of the
FFT as an unbiasing algorithm rests on the following mixing assumption.

Assumption2. The time series Xt possesses moments of all orders and its

cumulant functions satisfy
X

t1

: : :
X

tk�1

jcX:::X (t1; : : : ; tk�1)j <1: (2)

In our case, the disk-timing data Xt are bounded, so the cumulants do exist.
De�ne the power spectrum and the �nite Fourier transform, respectively, as

fXX (�) =
1X

t=�1

jcXX (t)j e�i�t <1 (3)

dTV (�) =
T�1X

t=0

Xte
�i�t (4)



where V denotes a T -vector (X0; : : : ; XT�1). Then

Theorem3 (Brillinger, 1981 [7]). Let Xt be a stationary time series which sat-

is�es Assumption 2, and let �1; : : : ; �k be distinct values in the interval [0; 2�]
s.t. �j 6= 0; �; 2�. Then as T ! 1, the values dTV (�j) converge asymptotically

to independent (complex) normal random variables with mean 0 and variances

equal to 2�TfXX (�j).

As an immediate consequence it is clear that the phase angles �j = arg
�
dTV (�j)

�

are asymptotically independent and uniformly distributed on the interval [0; 2�].

Theorem 3 is a generalization of the Law of Large Numbers. Like the L.L.N.,
it grants perfect normality only in the limit as T !1, so the spectral distribu-
tions are only approximately normal. Another price of the theorem's generality
is that the output distribution converges only pointwise to the desired joint nor-
mal. Lacking convergence-rates, we must measure how well the spectra approach
normality, so that we can choose a practical spectrum-length T .

To feed the FFT, we �ltered and decimated our raw disk-periods to re-
move some obvious quantization structure. We discarded the FFT's predictable
spectral lines at �0; �T=2; �T=2+1; : : : ; �T . Note that if we take from this al-
gorithm more bits than we feed into it, we run the risk that the mapping
arg(dT()) : V ! [0; 2�)T=2 can be inverted, even if we only keep part of the
spectrum as random numbers.

We claim that disk access-times satisfy Assumption 2. No statistical test can
justify such a claim, so we will argue instead that the cumulants' decay follows
from SDIC. The N.R.T. theorem ensures exponentially-damped autocorrelation
[14], but says nothing about higher-order correlations.

The mixing condition is formally very di�erent from SDIC, but their mean-
ings are similar: loosely, both put limits on how measurements can aid prediction
of the system's long-term behavior:

{ SDIC means that measured initial conditions are insu�cient;

{ mixing means polynomial functions of past measurements are insu�cient.

To see that SDIC implies our mixing condition, suppose that a cumulant of order
k fails to decay, so that arbitrarily long-term dependencies can exist among k

measurements of the time series. Then n < k early measurements can su�ce to
predict some function of k � n later measurements' values, for some arbitrar-
ily large separations between the two groups. The n early samples, though, all
have limited accuracy, and cannot specify the underlying system's state with
in�nite precision. Thus, we've contradicted the SDIC property: the �rst n sam-
ples specify a range of initial conditions, whose consequences are recurrently and
signi�cantly parallel.



4 Statistical Analysis

In this section we summarize two data analyses, as \sanity checks." We tested:

{ our measured access-times, to ensure that noise was present.
{ the RNG's product, for several deviations from randomness.

We call these measurements sanity checks, because our argument for the disk's
value as a noise-source actually rests on the mathematical properties of the
disk's air turbulence, and not on our observations. These tests' failure would
have disproven our claim that the disk's motion reects turbulent ow.

For our measurements, we used an IBM RT/PC desktop workstation and a
Micropolis 1320 series 40 Mb hard disk with nonremovable 5.25 inch media. A
permanent-magnet brushless DC motor turns the disk spindle at a nominal rate
of 3600 r.p.m. The motor's phase-locked loop stabilizes the rate to � 0:03%,
which amounts to a positional accuracy of 5 �sec. [19].

The workstation's operating system was MIT Project Athena's port of 4.3bsd
UNIX, with machine-dependent routines from the IBM Academic Information
Systems release. For our tests, we debugged the UNIX kernel's microtime()
subroutine, and we modi�ed the disk-scheduler software to record the time at
each disk-access' initiation and completion. We were particularly careful to avoid
disturbing the spindle's speed with head motion. During experimental sessions,
the workstation ran \standalone," isolated from the MIT network, with no time-
synchronization software or other inessential processes running. Sessions lasted
from 30 minutes to 8 hours. To measure disk-speed uctuations, we repeatedly
read a chosen disk block, and recorded each access-completion time. This entails
so little software overhead that we could read the block on every rotation, so
the completion-time di�erences gave a running account of the disk's period. The
RT's 1024 Hz. hardware clock limited our measurement precision to �1 msec.

Our measurements were consistent with the 5 �sec variation. We considered
a variety of inuences whose timing e�ects might resemble rotational latency:

{ delays within the disk controller,
{ bus arbitration,
{ instruction and I/O caching e�ects.

We believe that the RT's very simple disk controller and interrupt mechanism
make these e�ects negligible. Our analysis of 1.7 million disk-periods showed
that some noise was present in the variation, its auto-correlation fell o� within
5 seconds, and its entropy amounted to about 100 bits/minute [12], enough for
2,600 highly random DES keys/day.

From 100,000 access-times, and using an FFT vector-length T = 1000, we
gathered �50,000 complex-valued spectra, and found that

{ the real and imaginary parts passed various Q-Q plot normality tests;
{ the angles passed various runs tests, and their a.c.f showed no correlation;
{ the angles' 64 bits were pairwise uncorrelated.

We by no means intend these tests to be de�nitive, because we take it for granted
that a posteriori arguments for randomness are inconclusive.



5 Conclusion

Experiments by ourselves and others show that the disk's speed uctuates mea-
surably because of air turbulence and other factors. Our random number gener-
ator uses the FFT algorithm to convert the measured variations into uniformly-
distributed and independent variables. In a \worst-case" experimental scenario,
we have measured 100 bits/min of entropy in a quiescent disk's speed variation.

We have also sketched a mathematical justi�cation for our claim that our
generator's product is truly random. In summary,

1. Disk drives have Taylor-Couette turbulence [1];
2. The N.R.T. theorem applies to Taylor-Couette turbulence [9];
3. N.R.T. theorem ) Sensitive dependence on initial conditions [14];
4. SDIC ) cumulants decay [Section 3];
5. Cumulants decay ) independent, normal spectra [7].

Turbulence's unpredictability is formally and experimentally well-founded in
nonlinear dynamics. The SDIC criterion ensures that disk access-times satisfy a
statistical mixing condition, which in turn ensures that the time-series' spectra
are nearly independent, nearly normal variables. Sanity check statistical analy-
ses, of disk periods and their spectra, are consistent with our argument.

Our experimental scenario is unrealistically constrained, but yields enough
random bits to meet a large installation's key-service needs. We believe we could
amplify this high-quality entropy by allowing the head's motion, the disk sched-
uler, and spindle-speed variations to inuence each other synergistically. Other
hardware noise-sources o�er more bandwidth, but this one costs nothing, so our
\per bit" price is very competitive.
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