
[15] C. Neuman and J. Kohl, The Kerberos Network
Authentication Service (V5), Internet RFC 1510,
September 1993.

[16] E. Rescorla and A. Schi�man, \Secure Hyper-
text Transfer Protocol," Internet Draft RFC,
May '95.

[17] R. Rivest, A, Shamir, L. Adleman, \A Method
for Obtaining Digital Signatures and Public-Key
Cryptosystems," Comm. ACM, v. 21, 2, Feb.
'78, pp. 120-126.

[18] J.I. Schiller and D. Atkins, \Scaling the Web of
Trust: CombiningKerberos and PGP to Provide
Large Scale Authentication," USENIX Winter

Conference Proceedings, January 1995.

[19] E.H. Spa�ord, \Observing Reusable Password
Choices," USENIX 3rd Security Symposium

Proceedings, (Baltimore; Sept. '92), pp. 299-312.

[20] J.G. Steiner, C. Neuman, and J.I. Schiller,
\Kerberos: An Authentication Service for
Open Network Systems", USENIX Winter Con-

ference Proceedings, February 1988. [athena-
dist.mit.edu:pub/kerberos/doc/usenix.PS]

[21] USPS Electronic Commerce Services, product
information sheet (Washington, DC), 1995.

[22] Visa International and MasterCard, \Secure
Electronic Transactions Protocol Speci�cation."

[23] Visa International and Microsoft Corp., \Secure
Transaction Technology Speci�cations."

[24] A. Young, M. Yung, \The Dark Side of Black-
Box Cryptography -or- Should We Trust Cap-
stone?" Advances in Cryptology { CRYPTO '96,
Springer-Verlag, Berlin, 1996.

[25] P. Zimmermann, The O�cial PGP User's

Guide, MIT Press (Cambridge, Mass.) 1995.

8 Appendix: Symmetric Key-

Distribution

A symmetric Key-Distribution Center is a trusted
server that knows each user's password. The KDC is-
sues temporary session-keys to users who know their
passwords. Each user's initial session-key comes to
him under his password's encryption. The KDC then
uses this initial key to encrypt the user's subsequent
session keys.

1. Account-Creation:

� The user proves his identity to the KDC's ad-
ministrator (not electronically).

� The administrator creates an initial password for
the user, and tells the user to change it immedi-
ately.

2. Single-Sign-On

� At login, the user types his password, so as to
decrypt his daily temporary session-key.

� The user applies this session-key in a similar pro-
tocol repeatedly through the day as he accesses
services, gaining a new session-key for each dif-
ferent server.

3. Authenticating Others

� To communicate securely with other users and
with networked services, the user applies various
session-keys in a simple protocol.

� In each repetition of this authentication proto-
col, the KDC identi�es the session-key's owners
to each other.

4. Password-Change

� The KDC can require the user to change his pass-
word regularly, as a condition for access.

� When the user changes his password, the KDC
can examine it, so as to enforce complexity cri-
teria on the user's choice.

� The KDC stores the new password in the
database, in a hashed form.

5. Account-Revocation

� Session-keys are timestamped to expire quickly,
usually after 8 hours or even a few minutes. This
discourages key-theft.

� If a user's password is compromised, then he
must inform the CRL administrator, who man-
ually replaces the user's password, and tells the
user to change it immediately..

The KDC's trusted role gives it potential access to
all of the system's tra�c. In return, the KDC takes
responsibility for managing, validating, and renew-
ing all of the system's keys. Thus, compared to a
public-key system's security, all of the KDC's links
are weakened somewhat, except for the weakest: the
user's key-management link is greatly strengthened.



management, smartcards just substitute the problem
of physical security. Smartcards o�er no help for the
problems of authenticated issuance and revocation.

6 Conclusion

Compliance defects impede the sound management of
keys and of user-accounts. These defects have arisen
from the introduction of public-key cryptography
into mass-market software As public-key security was
originally envisioned during the '70's and '80's, so-
phisticated users and sensible key-hygiene were taken
for granted. For example, Privacy-Enhanced Mail's
designers explicitly expected that the professionals
who then used e-mail would be able to hand-check
their copy of the Root-CA's public key. With the
advent of mass-market electronic commerce, this as-
sumption no longer obtains. Nowadays, the security
system must be transparent wherever possible, and
where transparency fails, it must enforce good key-
hygiene.
Public-key cryptography is actually no more

\trustless" than symmetric-key security systems.
Public-key's decentralized nature actually places a lot
of trust on users, that properly belongs to the security
infrastructure and its administrators. Up to now, this
trust in users' discipline has been implicit, and has re-
ceived little or no attention in discussions of the In-
ternet's security infrastructure. However, it's time to
re-assess public-key's \trustlessness," as we approach
the large-scale deployment of public-key protocols for
electronic commerce.

7 Acknowledgements

Dan Geer, Barry Jaspan, Win Treese, Jon Gossels,
Karl Andersen, and Brad Johnson were helpful when
I discussed these ideas with them. I also received
helpful critique from the USENIX referees.

References

[1] R.J. Anderson, \Why Cryptosystems Fail,"
Comm. ACM, v bf 37 no. 11 (November 1994),
pp. 32-40

[2] R.J. Anderson, R.M. Needham, \Robustness
Principles for Public-Key Protocols," Advances

in Cryptology { CRYPTO '95, Springer-Verlag,
Berlin, 1995.

[3] M. Burrows, M. Abadi, and R. Needham, \A
Logic of Authentication," Proc. R. Soc. Lond. A
426(1989) pp. 233-271.

[4] D.A. Curry, UNIX System Security: A Guide

for Users and System Administrators, Addison-
Wesley Professional Computing Series (Reading,
Mass.) 1992.

[5] D. Davis, \Kerberos Plus RSA for World Wide
Web Security," Proc. 1st USENIX Workshop on

Electronic Commerce (NYC, 7/95), pp.185-8.

[6] D. Davis and R. Swick, \Network Security via
Private-Key Certi�cates," USENIX 3rd Security

Symposium Proceedings, (Baltimore; Sept. '92)
pp. 239-42. Also in ACM Operating Systems Re-

view, v.24, 4 (Oct. 1990).

[7] D. Geer and J. Rochlis, \Network Security: The
Kerberos Approach," Usenix Workshop Tuto-
rial.

[8] L. Guillou and J. Quisquater, \A Practical Zero-
Knowledge Protocol Fitted to Security Micro-
processor Minimizing Both Transmission and
Memory." Advances in Cryptology { EURO-

CRYPT '88, Springer-Verlag, Berlin, 1988.

[9] Clyde Hoover wrote the npasswd command at
U. Texas at
Austin: ftp://emx.utexas.edu/pub/npasswd. For
a concise description, see [4], p. 171.

[10] C. I'Anson and C. Mitchell, \Security Defects
in CCITT Recommendation X.509 - The Direc-
tory Authentication Framework," ACM Comp.

Comm. Rev., (Apr '90), pp. 30-34.

[11] International Telegraph and Telephone Consul-
tative Committee (CCITT). Recommendation
X.509: The Directory - Authentication Frame-
work. In Data Communications Network Direc-

tory, Recommendations X.500-X.521, pp. 48-81.
Vol. 8, Fascicle 8.8 ofCCITT Blue Book. Geneva:
International Telecommunication Union, 1989.

[12] C. Kaufman, R. Perlman, and M. Spencer, Net-
work Security: PRIVATE Communication in a

PUBLIC World, Prentice-Hall Series in Com-
puter Networking and Distributed Systems, (En-
glewood Cli�s, NJ) 1995, pp. 436-8.

[13] B. Lampson, M. Abadi, M. Burrows, E. Wob-
ber , \Authentication in Distributed Systems:
Theory and Practice" 13th ACM Symposium on

Operating Systems Principles pp. 165-182, Oct.
1991

[14] Netscape Communications, \Secure Socket
Layer Reference Document," Uno�cial Internet
Draft.



Public-Key Symmetric-Key

Adding New Users bad scaling bad scaling
Revocation bad scaling easy scaling

Out-of-Band Validation Root Key: 1st PW:
hard, frequent easy, only once

Theft Exposure long-lived key short-lived key
valuable little value

Password-Quality optional enforced

Network Bottleneck CRL service KDC

Physical Security client, CA, CRL KDC

Key-Mgt Responsibility end-user sys-admin
Table 1. Compliance defects and administrative di�erences be-
tween public-key and symmetric-key security systems.

too, because the KDC is a symmetric-key network's
\single point of failure."

In summary, a public-key security infrastructure
has four advantages over a symmetric-key KDC:

� Less trust,

� Lower availability demands,

� Better performance,

� Better reliability

However, these attractive features come at the cost of
transferring corresponding burdens onto users. The
�rst such transfer is well-known: public-key cryptog-
raphy entails a lot of local computation. Poor local
performance is the price of avoiding the KDC's bot-
tleneck in network performance and reliability. Es-
sentially, users avoid waiting through one or two sec-
onds of extra network-latency, by spending a compa-
rable period on bignum arithmetic.

The second administrative transfer is the focus of
this paper: the public-key infrastructure is less trust-
ful and less available, and hence is easier to adminis-
ter, but only because the hard part of public-key ad-
ministration is local and cannot be centralized. Con-
trary to general belief, public-key cryptography does
not abolish administrative trust and diligence. In-
stead of the users having to trust and rely upon a
central organization, every user is responsible for ad-
ministering his own security. What's worse, an or-
ganization's overall security depends primarily on all
users to be diligent in their key-management duties.

This reliance on users' diligence is utterly unre-
alistic. Anderson has collected many case-studies
of poor security practices among �nancial users of
symmetric-key security [1]. He consistently found
that application-programmers and end-users do not

understand, and will not perform, simple key-
management duties. Since symmetric-key users have
a much lighter key-management burden than public-
key security would impose, it is plain that compliance
will be the weak link in public-key-secured networks,
too.

5 Repair

For a mass-market public-key system to solve these
problems, it would have to incorporate highly-
available, trusted, and secure servers. Such solutions
would add centralized infrastructure costs to public-
key's already substantial performance costs. At the
cost of introducing administrative trust, symmetric-
key systems solve all but the problem of long-distance
account-creation, which is hard for any security sys-
tem.

We can combine both cryptosystems' administra-
tive bene�ts, by restricting public-key deployment to
servers, and by using symmetric-key protocols for
desktop clients. [5] The clients' KDC can enforce
password-quality, issue short-lived keys, validate
servers' public keys, and maintain CRLs. For sig-
natures and asynchronous messaging, a symmetric-
key-based signature system can mediate between na-
tive symmetric-key users and external public-key
users. [13, 6] This hybrid security system would put
public key-pairs only in the hands of well-trained sys-
admins, and would also minimize the CRLs' scaling
problems. Hybridization trades away theoretically
perfect privacy, so as to strengthen public-key's prac-
tical weak link: user compliance.

Smart-card hardware can repair some compliance
defects, but they fall far short of completeness.
Smartcards are completely e�ective only for Root-
key validation. For passphrase QA and private-key



be checked with the user's public key. 5 However, if
the user is to be able to decrypt private messages, he
has to keep his private key in memory, and in plain-
text form, throughout his login-session. The only way
to keep the in-memory key safe is to keep the user's
computer physically secure, and to forbid all remote
access by outsiders. Clearly, users will not reliably
observe these precautions.

3.5 Passphrase Quality

A public-key system has no way to enforce expira-
tion or quality controls on passphrases, because users
don't share their passphrases with any security ser-
vice or administrator. It's possible, of course, for
the user's local passphrase-handling software to ap-
ply such controls, but if the user �nds the controls
inconvenient, he can just use a more lenient program
to encrypt his private key.

Without e�ective passphrase-QA, users' private
keys are only as secure as the �lesystem on which
they are stored. For example, if the encrypted
private keys are stored on a networked �lesystem,
many will be utterly vulnerable to guessing attack.
This threat makes it unsafe for a user to access
the net from di�erent machines, because such logins
would require unauthenticated access to the user's
passphrase-encrypted key, and so would expose the
key to o�-line dictionary attack.

In contrast, it's easy for a trusted-party KDC to
enforce a quality-control policy on each user's pass-
word, because the user must share his password
with the KDC, anyway. Typically, the KDC en-
forces the password-expiration controls when the user
logs in, and only enforces the quality-controls when
the user changes his password. Then, the KDC
can apply various rules and �lters to ensure that
the password is hard to guess. For example, the
Kerberos system has incorporated most of the fea-
tures of U. Texas' npasswd command [9], password-
expiration, and other password-QA features, in a ex-
ible password-policy mechanism. 6 Another valuable
approach is proactive dictionary-checking. Purdue's
OPUS project developed a �lter which quickly checks
passwords against a set of dictionaries, but without

5Let N be a public message, and denote its secret sig-
nature by Nd. To sign a message m, the signer calculates
Sm = (Nd)m; Sm and N together make up the temporary

key's signature. To check the temporary-key signature, the
veri�er calculates Sme and Nm. In a valid signature, these
values will be equal, because (Ndm)e = (Nde)m = N

m

6This password-policy mechanism is part of the Krb V5
Admin server software, which OpenVision Technologies wrote
and contributed to MIT's Kerberos source-distribution. Open-

Vision has o�ces in Cambridge, Mass., Pleasanton, Calif., and
London, UK.

divulging the passwords to any trusted party. [19]

Left to their own choices, users tend to choose
passwords that are easy to guess, and they tend not
to change their passwords unless the security sys-
tem obliges them to do so. Thus, lacking e�ective
password-quality controls, most public-key systems
are vulnerable to o�-line guessing attacks. An orga-
nization's �rst line of defense in data security is to
enforce good password hygiene, so for corporate net-
works, this defect is a grave one.

Table 1 summarizes the compliance defects I have
discussed.

4 Transferring Administrative

Burdens

A symmetric-key KDC must be highly trustworthy
and highly available. In comparison, a public-key
system is easier to administer centrally, because a
public-key infrastructure's trust and availability re-
quirements are more relaxed:

� The CA doesn't have to be highly available, be-
cause users rarely need new certi�cates. The CA
is a trusted service; it cannot eavesdrop on en-
crypted messages, but a corrupt CA can forge a
key pair and certify it in a user's name. Thus,
users do have to trust the CA not to issue false
certi�cates.

� The Directory is in essence a convenience; it
saves users the trouble of exchanging their cer-
ti�cates with each other. The Directory is unable
to forge certi�cates, so it requires no trust, but
it should be highly available.

� The CRL has to be trusted to disseminate re-
vocations \promptly;" depending on the appli-
cation's criterion for \promptness," this may re-
quire high availability.

So, we see that some components have to be trust-
worthy, and some have to be highly available, but
trust and high-availability are generally not required
simultaneously of each public-key service.

Symmetric-key systems have another administra-
tive burden from which a public-key infrastructure is
free. The public-key infrastructure is not a bottleneck
in the network, because the CA, Directory, and CRL
servers don't have to mediate in every secure com-
munication, as a KDC must do. 7 This improves not
only the network's performance, but its reliability,

7The CRL is a bottleneck, but many applications can tem-
porarily waive CRL-checks, during lapses in the CRL's service.



executable, for example, then the attacker can cause
the client to accept forged certi�cates. Unhappily,
when executables come as freeware and from �le-
servers, this key-substitution is easy to do. Once
the user accepts a forged certi�cate, the attacker can
pose as the application server. To escape detection,
the attacker just plays as a man-in-the-middle. To
prevent the MITM properly, a public-key protocol
should sign the plaintext, then encrypt the signature,
then sign the ciphertext { clearly a burdensome pro-
cess. 4 It may be more practical to ensure that the
Root key, once validated, cannot be corrupted. One
way to guarantee this is to keep the Root key on a
smart-card. Other, weaker safeguards are to keep the
Root key under the passphrase's encryption, or equiv-
alently, for the user to sign his copy of the Root-key
himself.

3.3 Certi�cate Revocation Lists

Before we use a public key, we must validate the key's
certi�cate in two ways: we must check the issuing
CA's signature, and we must check the current Cer-
ti�cate Revocation List to see if the public key is still
active. The CRL is part of the public-key infrastruc-
ture's account-management system. The other parts
are the CA and its practice of issuing limited-lifetime
certi�cates. It might seem that a user needs to check
his cached certi�cates only when he acquires them,
but this is not true. It is a simple matter for a virus
to corrupt a certi�cate cache, and a certi�cate may
be revoked just before use, or even just after it enters
the cache.

A fair, if simplistic, rule of thumb is that the cost
of key-issuance plus the cost of revocation is a con-
stant [7]. For symmetric-key systems, these costs are
roughly equal, but for public-key systems, certi�cate
revocation is much harder than issuance. Revocation
is the classic Achilles' Heel of public-key cryptogra-
phy. When a user's public key must be removed from
use, the only way to enforce prompt revocation is to
check every certi�cate before use against a Certi�-
cate Revocation List. Naturally, CRLs must come
from a secure and highly-available service. Further,
to check the CRL server's own public-key certi�cate,
the user must refer to a higher-level CRL server, be-
cause a CRL server cannot testify about its own cer-
ti�cate's currency. Thus, the public-key infrastruc-
ture needs a hierarchy of CRLs, just as it needs a
hierarchy of CAs. However, this real-time reliance on
a centralized infrastructure negates one of the main
advantages of public-key cryptography { as originally
conceived, public-key protocols would avoid depen-

4Simply signing the ciphertext doesn't work; see [3, 10, 2].

dence on centralized points-of-failure. Further, note
that a rigorous check of a certi�cate's validity requires
that the public key of each CRL in the chain to the
Root has to be revocation-checked, just as with sig-
nature validations. However, while a signature-check
takes around 10 milliseconds, a long-haul CRL check
will often take 100 or more milliseconds. This extra
performance burden makes it likely that applications
will often avoid revocation-checking the CRL's own
certi�cate. This compliance defect undermines the
security of any application that uses public-key cryp-
tography.

Clearly, the timely management of CRLs is an im-
portant scaling bottleneck. The size of the CRL can
be minimized by using an access-control system to re-
voke access, but e�cient ACL management for very
large networks is another unsolved scaling problem.
The need for prompt revocations becomes especially
acute if digital signatures have �nancial or contrac-
tual import. There seems to be little progress towards
a national CRL mechanism.

3.4 Private-Key Management

In order to use his public key for sending and re-
ceiving secure messages, a user must either enter
his passphrase anew for each use, or he must keep
his private key in memory throughout his login ses-
sion. Note that clients apply the private key not
only to sign and decrypt e-mail, but also to initiate
sessions with secure network servers. Clearly, users
will not accept software that forces them to re-enter
passphrases all day long, so in practice their keys will
stay in memory. This is a substantial security ex-
posure, because it exposes a long-lived secret, the
private key, to physical theft. For example, if the
user leaves his keyboard unattended, or if his lap-
top is stolen, his private key will likely be compro-
mised. Similarly, viruses and Trojan-Horse programs
have been built to steal long-lived keys. [24] So, the
private key is only as secure as the user's computer.
Even if the user's private key is stored in an encrypt-
ing smartcard, so that the key itself doesn't reside
in memory, the card still must stay in the reader
throughout the session, and so is still vulnerable to
theft.

Symmetric-key systems often are designed to re-
place long-lived passwords in RAM with short-lived
session keys, so as to minimize the passwords' in-
memory exposure Short-lived asymmetric key-pairs
are not very useful, though. For signature operations
only, it is possible to avoid keeping the private key on
hand, by using a secret signature as a temporary pri-
vate key. [8, 12] This temporary key's signature can



The creation and revocation defects can in principle
be remedied with centralized infrastructure, but the
other three problems cannot be solved without the
user's cooperation and intervention. Further, extra
infrastructure entails scaling problems that lead im-
mediately to shortcuts, trading away security in fa-
vor of performance. Recent proposals for public-key-
based commerce have typically been naive in just this
way, by ignoring the need for this extra infrastructure
when in reality, the need can but momentarily be de-
ferred.

3.1 Authenticating the User

One of the great promises of public-key cryptogra-
phy is that a Certi�cate Authority can serve many
more users than can a key-distribution service, be-
cause users only rarely have to interact with the CA.
Indeed, since users get certi�cates monthly or annu-
ally, a CA's per-user load is a hundredth to a thou-
sandth of a key-server's. Even accounting for the
CA's greater crypto overhead, we might expect a CA
to serve up to a million or more users. Unfortunately,
this cheap scaling is a false promise.

The y in the ointment is that there's more to is-
suing a certi�cate than merely calculating a digital
signature. A public-key certi�cate is an assurance
about the identity of the corresponding private key's
owner. Just as the user can't trust an electronic de-
livery of the Root-key (see below), the CA can't trust
electronic assurances of new users' identities. In both
cases, what's required is a secure \out-of-band" com-
munication. Ideally, the CA sys-admin should per-
sonally meet the new user and check his identifying
documents (driver's license or passport), before sign-
ing a statement about who holds what key. Such face-
to-face meetings are routine for user-account creation
in the smaller installations that use symmetric keys,
but truth be told, meeting a million users face-to-face
isn't easy. Further, in the public-key world, users and
CAs usually are widely separated, so universal face-
to-face certi�cate issuance is really practical only for
PGP hobbyists [25]. Properly authenticated certi�-
cates will have to be expensive, because of the labor
cost in a face-to-face identity check. For most people,
a certi�cate's ownership will be no more airtight than
a credit card's privacy, especially since credit-card
companies will be issuing certi�cates. Often it will
be even weaker than this, since Verisign is planning
to issue its lowest-level certi�cates by e-mail. Per-
haps the only U.S. organization that already has the
infrastructure necessary for correctly issuing public-
key certi�cates is the U.S. Postal Service [21]. Cer-
tainly, the degree of certainty that one requires for a
certi�cate varies with the application. A full discus-

sion of such issues and their relevance to the present
argument is beyond the scope of this paper, but it's
clear that unauthenticated issuance o�ers no security
guarantees.
It is possible to use a symmetric-key security sys-

tem to authenticate a public-key certi�cation-request.
MIT has added a PGP-signing service to the Ker-
beros authentication system. [18] In this scheme, the
authenticity of the certi�cate's name-to-key binding
is as sound as the Kerberos account's creation was. If
the user-accounts administrator checked IDs in face-
to-face meetings, the Kerberized CA's certi�cates will
be meaningful. If instead the users can register them-
selves remotely, then the certi�cates will be all but
meaningless. 2

In sum, CAs cannot scale as well as might seem
possible, because account-initiation is less a technical
scaling problem than a social one.

3.2 Authenticating the CA

It is a telling and ominous fact that every electronic-
commerce protocol speci�cation explicitly disavows
all responsibility for the validation of the Root CA's
public key [14, 16, 22, 23]. \Outside the scope of this
document" is a typical waiver. [14]
Before using a public-key certi�cate, a user must

authenticate it by checking its certifying signature
and the signature on each public key in its chain of
certifying authorities. It's commonly forgotten that
public-key cryptography cannot a�ord the user any
automatic procedure for validating the top-level CA
key. To make sure the top-level CA key is authentic,
the user has three choices:

1. Hand-checking it against an authentic paper
copy;

2. Making sure that the CPU's copy is incorrupt-
ible;

3. Using a separate security system, like a smart-
card or Kerberos [15, 20], to convey an authentic
copy to the CPU.

It is not su�cient to pass the top-level keys in-
side the application-client's executable, as Netscape's
Web browser does [14, 5]. Even if the executable is
signed, we still have to authenticate the signature's
validation-key. 3 If the attacker replaces one of the
client software's top-level CA keys, by patching the

2At MIT, sta� members usually get their accounts face-to-
face, but students usually do it remotely.

3It is often suggested that the Root-CA can sign the exe-
cutable that contains the Root-CA key, but an attacker can do
this with a false CA-key, too. Such self-signed certi�cates are
essentially meaningless.



In a wide-area network, each of these services may
be deployed as a hierarchy of servers. For example,
in a hierarchy of CAs, each CA has its own public-
key, which is signed into the CA's own certi�cate by
the next higher CA in the tree. However, the \Root
CA," at the top of the hierarchy, has no one to sign
its public key.

In the rest of this section, I summarize the ad-
ministrative features of public-key security systems,
with emphasis on the issues of key-handling discipline
that I'll describe in the rest of the paper. 1 Key-
management issues arise at the following crucial mo-
ments in the life-cycle of a user's public key certi�-
cate:

1. Key-Creation:

� The user creates a new key-pair.

� The user proves his identity to the CA (not elec-
tronically).

� The CA signs a certi�cate that names the user
as the bearer of his new public key.

� The user also receives the Root CA's public-key,
for later use.

� The user chooses a secret passphrase, and uses
it to encrypt his asymmetric private key.

2. Single-Sign-On

� At login, the user types his passphrase, so as to
decrypt his private key.

� With his private key, the user participates in
public-key protocols.

3. Authenticating Others

� To communicate securely with other users and
with networked services, the user refers to the
other parties' public-key certi�cates.

� The user either exchanges certi�cates directly
with other users, or he get others' certi�cates
from the Directory service.

� Before using a certi�cate, the user must check
the CRL for notice of the certi�cate's revocation,
and must

� Validate the CA's signature. This step is recur-
sive, and ends with the out-of-band validation of
the Root CA's public key.

1A similar summary for symmetric-key security systems ap-
pears in the Appendix. My outlines are loosely based on the
X.509 [11] and Kerberos systems [15, 20].

4. Password-Change

� The user should regularly change the passphrase
with which he decrypts his asymmetric private
key.

5. Key-Revocation

� Certi�cates are timestamped to expire after a
few months or a year.

� If a user's passphrase or his private key is com-
promised, then he must inform the CRL adminis-
trator, who disseminates a notice that the corre-
sponding public-key certi�cate has been revoked

� The user should check the CRL every time he
uses a certi�cate, because the CRL may be up-
dated at any moment.

The reader will notice, on reviewing this chronol-
ogy, that a public-key user is frequently required to
protect and validate a variety of symmetric and asym-
metric keys. Unfortunately, a public-key infrastruc-
ture cannot help the user in these tasks, nor can it
compel his compliance.

3 Compliance Defects

Public-key Cryptography has �ve unrealistic rules of
use, which I call compliance defects. These defects
correspond one-for-one with the crucial moments in
a key-pair's life-cycle:

1. Authenticating the User (Issuance): How does a
CA authenticate a distant user, when issuing an
initial certi�cate?

2. Authenticating the CA (Validation): Public-key
cryptography cannot secure the distribution and
validation of the Root CA's public key.

3. Certi�cate Revocation Lists (Revo-
cation): Timely and secure revocation presents
terri�c scaling and performance problems. As a
result, public-key deployment is proceeding with-
out a revocation infrastructure.

4. Private-Key Management (SSO): The user must
keep his long-lived private key in memory
throughout his login-session.

5. Passphrase Quality (PW-Change): There's no
way to force a public-key user to choose a good
passphrase.



Compliance Defects

in Public-Key Cryptography

Don Davis�

May 29, 1996

Abstract

Public-key cryptography has low infrastructural over-
head because public-key users bear a substantial but
hidden administrative burden. A public-key security
system trusts its users to validate each others' public
keys rigorously and to manage their own private keys
securely. Both tasks are hard to do well, but public-
key security systems lack a centralized infrastructure
for enforcing users' discipline. A compliance defect

in a cryptosystem is such a rule of operation that is
both di�cult to follow and unenforceable. This paper
presents �ve compliance defects that are inherent in
public-key cryptography; these defects make public-
key cryptography more suitable for server-to-server
security than for desktop applications.

1 Introduction

Public-key cryptography is uniquely well-suited to
certain parts of a secure global network. It is widely
accepted that public-key security systems are easier
to administer, more secure, less trustful, and have
better geographical reach, than symmetric-key secu-
rity systems. However, it is not widely appreciated
that these advantages rely excessively on end-users'
security discipline. In fact, the reason public-key se-
curity doesn't need a trusted key-management infras-
tructure is that the burden of key-management falls
to public-key clients. With public-key cryptography,
clients must constantly be careful to validate rigor-
ously every public key they use, and they must hus-
band the secrecy of their long-lived private keys. It
turns out that these tasks are harder than they seem.

End-users are unwilling or unable to manage keys
diligently. Perhaps surprisingly, it's impossible to au-
tomate asymmetric key management completely; cer-
tain security details remain for human intervention,
such as Root-key validation, passphrase choice, and
clients' physical security. Even where automation is

�A�liation: Independent Consultant, 1318 Comm. Ave
#16 Allston, MA 02134; don@mit.edu

possible, as with revocation-list checks, scaling prob-
lems and performance costs make short-cuts likely.
If users or developers skip these details, there is no
way to detect their omission or to audit the conse-
quences. I have coined the name compliance defect

for this situation: a rule of operation that is di�cult
to follow and that cannot be enforced. Compliance
defects undermine the security of public-key cryptog-
raphy. When users fail to manage their private keys
securely, or when they fail to validate each other's
public keys rigorously, then authenticity and privacy
guarantees weaken, and everyone's security deterio-
rates. Users' behavior is the weak link in any security
system, but public-key security is unable to reinforce
this weakness.
This is not to say that compliance defects make

public-key systems worthless. Rather, compliance
defects just make public-key security unsuitable for
desktop applications. Only sophisticated users, like
system administrators, can realistically be expected
to meet fully the demands of public-key cryptogra-
phy. Accordingly, I suggest that public-key cryp-
tography is best suited to securing communications
between servers, between sites, and between organi-
zations. Only in such large-scale infrastructural ap-
plications does public-key's geographic reach justify
its substantial administrative burden of constant vig-
ilance.

2 Public-Key Infrastructure:

Review

A public-key security system comprises three infras-
tructural services.

� The Certi�cation Authority (CA) signs users'
public keys,

� The Directory is a public-access database of valid
certi�cates,

� The Certi�cate Revocation List (CRL) is a
public-access database of invalid certi�cates.


