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Abstract

Gravity and EM are unified at the level of a 4-potential by re-examining the
most obvious choice at the Lagrangian level:

_ Pm 1 1 v
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The Lagrangian has mass and electric current densities coupled to the 4-potential
with different signs: an attractive one for gravity and one where like charges repel
for EM. There are two irreducible field strength tensors that can represent the
reducible asymmetric tensor A*¥: a symmetric tensor for gravity and an antisym-
metric electromagnetic field strength tensor F'* for EM. Any long-range interac-
tions based on this Lagrangian will require two integer-spin fields due to the pres-
ence of two irreducible field strength tensors.

The Euler-Lagrange equations generate these 4D-wave field equations:
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If the mass current density J/ is zero, the Maxwell equations in the Lorenz gauge
result. If the electric charge density p, is zero but the mass density p,, is not, in
the static case, Newton’s field equation for gravity results. For the non-static case,
the equation is covariant under a Lorentz transformation.



4 The Standard Model

An inverse distance function solves a 4D-wave equation. This appears to
create a significant problem, since the derivative of the potential yields an inverse
cubed force law which is not physical. The static 1/R potential function for
Newton’s field equation is physically relevant. If the system is no longer static,
but only barely dynamic, then perturbation theory is necessary. A normalized,
linear perturbation potential function was found whose derivative has the correct
inverse distance dependence.

An electrically-neutral, normalized, linear 4-potential is used in a gravitational
Lorentz 4-force equation. The solution to the force equation, with a flat spacetime
metric constraint, yields the following dynamic metric equation:

GM GM

(dr)2=e *2r(dt)? — " r(dR/c)2.

This metric equation has the same ten parameterized post-Newtonian (PPN)
parameters as general relativity, so it will pass all the same tests of the equiva-
lence principle and the Schwarzschild metric. The second-order PPN parameters
are different, so the proposal could be confirmed or rejected experimentally.

A path from the gravitational Lorentz 4-force to Newton’s classical 3-force is
established. In the derivation, there is a choice between two derivatives as a con-
sequence of applying the chain rule to momentum. The derivation is repeated,
but this time choosing the other derivative. This leads to a new classical gravita-
tional effect, one where the change in momentum caused by gravity has the effect
that all particles travel with the same velocity, but the distribution of inertial
mass changes with respect to distance. This may lead to new explanations for the
rotation profile of thin galaxies without requiring dark matter or a modification of
Newtonian mechanics. A new approach to the horizon and flatness problems of
early big bang cosmology is possible. Both these application of the new classical
gravitational effect will require mathematical modeling to see how well it fits the
data.

A preliminary investigation into quantizing the radiation modes for the field
theory is done. The process will be very similar to the Gupta-Bleuler method of
fixing the Lorenz gauge due to the similarities between the field equations. The
key difference is that the unified field equations have at least two spin fields, one
even, the other odd.

A metric theory for gravity can only be about the distance between particles.
A theory for gravity must play the same role within the context of the standard
model. In flat spacetime, nothing about the standard model needs to be altered.
In curved spacetime, mass changes the description of each group: the absolute
value of the potentials in the U(1) group now are a definite value greater than 1.0,
and the norm of the potentials in SU(2) and SU(3) are also greater than 1.0.



Chapter 1

Lagrange Densities

1.1 EM Lagrange Density

Where all EM energy is in a volume, no gravity.
Lem=— 2"~ %Jﬁ Au— 41? (Arr — AV (A — Ay )

v

o —Im Energy density of inertial mass in motion (KE).

Y

o — % Ji' A, Energy density of electric charge in motion (charge coupling).

o — 5 (ArY — AVR) (AM,V - Awu)

4c2

Energy density of antisymmetric change in the potential.

1.2 EM to Gravity Analogy

o — "T’" No change for inertial mass in motion (KE).

e —¢—++VGm Electric charge to mass charge (different coupling).
e Change field strength tensor’s symmetry.

1., —; Derivatives to covariant derivatives.

Y

2. A—A— A+ A Antisymmetric to symmetric tensor.

There are two sign changes, both minus to plus. The first from -q to +m makes
like mass charges attract in both the force and field equations. The second sign
change in the tensor alters the symmetry, which also switches the kinds of parti-
cles that can carry out the interaction.

1.3 Gravity Lagrange Density Hypothesis

Where all gravitational energy is in a volume, no EM.



6 Lagrange Densities

Lo=—Lrt 1 T Ay — 417 (ARY + AYH) (A + Avip)

o4 c
o — me Energy density of inertial mass in motion (KE).
o + % JhA, Energy density of mass charge in motion (charge coupling).

o a3 (AL AT (At Auy)

Energy density of symmetric change in the potential.

1.4 GEM Lagrange Density

Laeum 1s the union of £4 and Lgy.
e Inertial mass in motion term is a union, not a sum.
e Sum charges in motion terms.
¢ Sum and simplify field strength tensor terms:

1., —; Derivatives to covariant derivatives.

2. AWYA,,, — AP¥YA,.,,=0  Cross terms drop.

3. AMYA,., = AVHA,., Contractions are equal.

LeEm=— me —1 (Jy =I5 Au— %A“?”AWV

c

The asymmetric field strength tensor is composed of two irreducible field
strength tensors. For long-range forces, the two tensors can be represented by dif-
ferent integral-spin fields, one even, one odd.

1.5 GEM Lagrange Density in Detail

Goal: Get to individual terms, no indices.
Method: Expand, contract, and repeat.

1. Start with the GEM Lagrange density which has 144 + 16 final terms:

LeEMm=— me - % (Jff = Th) A, — ;?A“?”AW,

2. Expand J* and A,. Apply the definition of a contravariant derivative to a
contravariant vector (A*Y =AMV —T'* A¥) to A»Y and A, :

E= 22— 2Py = pms Ty = T§) (6, — AY)

v

- % (A“’V —I's WAW) (AMJ/ —I” IWAU)

3. Contract J with A. Multiply out final term:
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g=_ptm_ (Pg_pm) ;f’”) (cp —vuAY)

v
— 5 (APVA, = 2T AT A, — T AT |, A,)
4. Expand A" and A, , . Work in local covariant coordinates where I'=0:
r— —
m q— Fm U AU 1 0 v u\ (9 v u
g=— oLzt (cg— gudv) — 2L (5, = V) (6, AY) (3, V7) (8, — AY)
O —]

5. Contract the second rank tensors, using the lines above as a visual guide:
g —tm (men) (o yugn) - L (202 (V)2 — ()2 4 (VA2

vy c? 2¢2 \\ ot

6. Write it ALL out:

Ox 0z
e pu/1- (5 - (5 - (5
_(Pq_Pm) (C¢—8—wa 3$Ay_%Az)

= Tt ot at
1,, 06 N N 86 0A, 0A, 0A, 0A,
—3 ()= (5 = (5) — (&) = (&) + (&) + (5 + (5)°
0A 0A 0A 0A 0A, 0A, 0A, 0A,
— (G (G (G + () = () + (5 ) + (5 ) + ()

1.6 In Pictures

The EM Lagrange density: — KE — electric J.A — antisymmetric field.field

B -0 - 0o - B

The gravity Lagrange density: — KE + mass J.A — symmetric field.field

L I BN B
L]

&

The GEM Lagrange density: — KE — (electric — mass)J.A — asymmetric
field.field

£ = - e-(@-0e + -

> * & s



Chapter 2
Fields

2.1 The Players

Here is a table of the players in the field equations. Three new fields for gravity
will be defined subsequently.

Rank Symbol Name
0 £ Lagrange density
1 c ;ﬁ ( aii") ¥ Field equations
1 AW 4-Potential
2 ArY 4-Derivative of a 4-potential
2 E €, B , b , g* Classical fields which constitute A*"
1 %, V x E , %, f—i, Field equations terms written as classical fields
V x B , VKD , Vgt

2.2 Apply Euler-Lagrange to the GEM Lagrangian

1. Start with the Euler-Lagrange equation, % = (%)’”, written without
indicgg: 2, ¢ a, oag o, os o, as
6526(5(3(%) —5(6(_%)—@(@) —5(6(_—%))
o8 _ (8, 8¢ \ B8, oL \ 8, oL \ 8, as
CaAz _C(at(a(agltx)) 3“”(8(7%)) (8( aAa:)) 3z(6( 3{;421:)))
o8 _ (9, 8L \ 9, 9t \ 8, ag 9, as
C(‘)Ay_c(at(a(ag%)) 89”(6( a;my)) 31/(8(—%)) 62(6( 6Ay)))
oe _ 9, o8 \ 8, oL a8, ag a2, o
2. Write out GEM Lagrange density without 1nd1(:es.
Ox 0z
’g:_pm \/1_ _2_ @)2 (cc?t)
q m) Ox 0z
- e G s — 8tA o)
a¢> d¢\a  (0¢\a  (0\2 [ 0A, 04, 04, 04,
—((5) (52)*— (@) —(52)* = (552)? +(W)2+(E)2+(¥)2
DA, oA, DA, 04, DA, DA, DA, DA,
— (G H (G2 + (G2 + (FD) = ()2 + (G + (52 + (5)°
3. Apply: , ,
—(pg— pm)=— 5+ o+ 4 22

(p —p )6_1:: 92A, _CaZA _Ca2A _ca2Az
q mJ ot cot? Ox2 Oy? 922
( . )ﬁ_ o024, _ o024, _ %4, _ o024,
Pq— Pm cot ~ cot? Ox2 Oy? 022
(p . )z: A, COQAZ . CBZAZ _ CaQAZ
¢~ Pm) o = o 022 oy? 922
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4. Summary: ,
T — Jh = (s — V) AP

cot?
o If J!' is zero, the Maxwell equations in the Lorenz gauge result.

o If p, is zero, for a static field, Newton’s gravitational field law results.

o If p,is zero, for a dynamic field, a relativistic gravitational field results.

2.3 Classical Fields

The classical fields E and B together make up the antisymmetric tensor (A*" —
AY#). Introduce three new fields, € and b which have EM counterparts, and a 4-
vector field g*for the diagonal components of the symmetric tensor (A*Y + A”:#).

o E=— % — Vo Electric field.
e &=+ %4 — c@gb Symmetric analog to electric field.
e B=cUxA Magnetic field.
- DA, 0A 0A, 0A,  OAy  OAs\ _ S T
o V=0 -G T T T e gy ) =V RA
Symmetric analog to magnetic field.
o gH=AMH= (%, — C%, — c%, — c%) Diagonal of A*".

3+3+3+3+4=16 parts total. All three new fields transform differently from axial
or polar vectors.

2.4 Classical Fields in Detail

1. Start with the asymmetric unified field strength tensor, A*”, written as a

matrix:

(6 A 4, 4)

17} o¢ OAz OAy OAz

ot ot ot ot ot
AT N - Y PR V.

AHY = ox Ox ox Oz Oz
e || Zoe _Lode _ 04y _ oA

Oy oy oy oy Oy
0 o) 0Azx 0Ay 0Az

— Cc— —_ o _ et 2T
0z C@z ¢ Oz ¢ Oz 0z

2. An antisymmetric and symmetric tensor sum equals 2 A*":

84y . 0¢ 0Ay | 8 8A; | 06
0 ot ¢ ot T Cay o T3
86  OAg 0Ay  BAy 84,  BAg
ARV AVob — Cor 0 ‘% t % 5z T C%;
= 8¢  0Ay 8Az | 0Ay 8Ar | OAy
Cay 5 Cay+caz 0 CBy+CBz
86 A 8Ag  0A, 0Ay | A,
Cor T & %, tT¢% 5, t¢%, 0
84 86 8A 80 5A a6
2% T _ 0% 90y L99 08z L99
2% ot Cos at  Coy ¢ Ca:
_ 00 Pha _, o0ha _ DAy 0Ay _ oAs _ 0hq
u,v vV, — oz ot Oz Oz Ox Oz Oz
AV 4 AV = 8¢  0A 8Ag  0OA oA 9A, OA
_c%_f—B_ty _Cay _cawy _200: _Cay _Cazy
86 | Az 84y 0A; 8Ay A 84
5. T ot % " “a 5 "oy —205;
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3. A®Y written in terms of the classic gravitational, electric, and magnetic
fields:
gt ex— b, ey—FEy e,—E,
ex+ E, Jx b.—B, b,+ B,
ey+E, b,+B, ¢, b,—B;
e:+E. by—By b+ B, g

2.5 Gauss’ Law and Newton’s Relativistic Gravita-
tional Field

Method: % (EM law + gravitational analog) + diagonal terms = field equations.
1, = - - 0
pg—pm=5(V-E+V-&)+ 2
LI Phe Py PAy 0% 0 0%
) dxz ot C8x2 dyot oy? 0z0t 022
024, 8%¢ | 0%Ay 8%2¢ |, 02%A, 8%¢ 8%¢
t oot Cax T oy Copr T azar  Con oo
_ P P B B,

—Ci5—Chrs—C

cot? Cam2 0y? 022

e Gauss’ law results in the physical situation with no mass charge density
and no divergence of the field €.

e Newton’s relativistic gravitational field equation results in the physical sit-

uation where there is no electric charge density and no divergence of the
field E.

Gauss’ law indicates like electric charges repel, while Newton’s field law implies
like mass charges attract.

2.6 Ampere’s Law with a Mass Current

Method: Same as previous.

Ji=Jm=2(~ 2+ 22 U x B+ VD) +V,g"

1,9%4, 8%2¢ 0924 9%¢ 0%A, 9?2
L R
2\ cot otdx’ cot Btdy’ cot ooz
_'_1(82Am 0% %A, 0% 9%A. a2¢)
2\ ¢Ot? otz cot? Otdy’ cot? Ot 0z
4e (82Ay A, 4 %A, 0%A, %A, 9*Ay | 9PA,  D0PA, 9PA,  0%A, 4 Ay
2 \Qyox Oy? 920z 022 7 9z0y 822 oz dy 0x2 7 Ox0z Ox2 Oy 0z
824,
)
c /0%A %A, 0%A, 9%A, O2A, 9%A 0%A, %A, 02%A, %A, 924
— 5 (Gt + 5+ + =5 + 55 + 55 + 55+ st
2 \gydx oy 820z 822 7 020y 0z Bz dy bx2 ° 9x0z oz By oz
%A,

y? 024, 82A, 524,
—C( ox2 ) 8y27 622)
— 124
e Ampere’s law results in the physical situation where there is no mass cur-

rent density, no gradient of the field ¢*, and no boxed curl of b.

A pure mass current equation results in the physical situation where there
is no electric current density, no time change of the field £, and no curl of
the field B.
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2.7 Homogeneous Maxwell Equations

The homogeneous equations or vector identities are unchanged.
e 0=V-B=V-(cVxA) No magnetic monopoles.
- OB — = 0 = — — 811 — — R
0="2+VXE=2VxA-Vx--VxcVp Faraday’s law.

No obvious vector identity analogs for gravitational fields have been found yet.

2.8 In Pictures

The electromagnetic fields E and B are transverse to the direction of motion.
The gravitational field analogues € and b are longitudinal. There is a new 4-
field g*:

3 _E

' \/'E | "-E
. B

EM GEM g*

The 5 fields can be written in terms of the potentials:

e ak =
: E 3 - ;;Tﬂ - '.?r?
' \‘ Be(iy 2
T ax Yo
A2 VN
b3 E —_— i ol oty
'f C}J-\;Ilij?,j-%_ }-'}‘ ‘-JI;\]

Newton’s law of gravity (like charges attract) and Gauss’ law (like charges
repel):

o
.t" Q\ )
@ @
Ampere’s law for gravitational and electrical currents:

'}r’? &

-
L



Chapter 3
Field Equation Solutions

3.1 4D-Wave Equation Solution in a Vacuum

1. Start with 4D-wave equation, no source:

[2A*=0

2. Guess a solution with an inverse relativistic distance:
An=YCh (@224 22— 2)710,0,0) = Y48 (L G)

3. Take derivatives:

(@ 1+ 22— )T = 2et (2 + 1+ 2 — P R)
a—<1’ +yi+ 22—t == 2x (2 + P+ 22— 2tP) 2
6%(3: +y2+22 -t t=—2y(a? + 2+ 22— 2t2) 2
2 (@ + P+ 22— ) = 22 (a2 4 P+ 22— P t?)

4. Take second derivatives:
D (+2to ) =+2(a +y2+ 22— ) 2482 (22 + P + 22 — P )
4

ax( 200 = =22+ 12+ 22— A1) 2+ 82" (22 + 2 + 22 — 1Y)
3 (—2y0™) == 2(a? 4 y?+ 22— ) 24 8y (a2 + P+ 22 — A) T
8%( 204 = — 20224 124 22— A12) 24+ 82 (a2 + 2 + 22 — 2 t2) 4
5. Sum:
2Ay  0%Ay Ay A
c26t(2) o 81:20 o 6y20 o 8220 =0 QED
o 2+ 1P+22-C212=0 Practical value: Singularity is the lightcone.
o @m# f (%) Practical problem: Derivative does not generate

12
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an inverse square force law.

3.2 Normalization and Perturbations

Quantum mechanics cliché: normalize and look at perturbations for a weak field.
Gravity is weak.

1. Normalization:
e UwmwxsU@xsU)  Unitary requirement of the standard model.

AH . )
TAR Dimensionless.

2. Perturbations:
o A—A=A+kd Linear restoration.
o k Spring constant (small number).

e 0 Variable.

3.3 Normalized, Perturbation Solution

1. Start with 4D-wave equation solution:
VGh 1 2 VGh 1 R
Al === )= (30

w2+y2+z2_c2t25

c? c?

2. Normalize so that the magnitude of A is one up to a constant:

c A¥ c/VG = c =
AH:E [A¥]| :(w2+y2/+z2_c2t270) Ve (1,0)
eyt

3. Perturb z, vy, z,and ¢ linearly with a spring constant k:

Ar— ¢ Al :( ¢/VG 6)
\/6 |A/‘| (%_‘_%)24_(%_’_%)2_’_(%4_%)2_(%4_k;c;)z’
c 02 R~ cC =
:@(012’0):\/5(1’0)

3.4 Derivative of the Normalized, Perturbation
Solution

1. Start with the normalized, perturbation solution:



14 Field Equation Solutions

A“— c A’”_( C/\/E _’)_ c (0'_2 6)
VG AL (o hp g (o M (o B (4B VG e
2. Expand
- 2,2 2,2 . k222 T ke 2,242 0
GHYE D+ G D+ G ) - G )
c o2 =
= Nz <Ur_27 0)

3. Take derivatives:
% = kO = Aok

cdt G VG o2

o @ Tk O(R?) = — ﬁ £+ o)
° % An inverse square distance dependence.
o £k A small number with units of distance.

3.5 Only Weak Gravity

A potential that only applies to gravity not EM will have derivatives only on the
diagonal of the field strength tensor.

e The sign of the spring constant k£ does not effect the solution.

e The sign of the spring constant k£ does change the derivative of the poten-
tial to first order in k.

¢ A potential that only has derivatives along the diagonal can be constructed
from two potentials that differ by spring constants that either construc-
tively interfere to create a non-zero derivative, or destructively interfere to

eliminate a derivative.

diagonal SHO A*=¢/VG

1 1
( +
1 kx 1 k 1 kz 1 kct kx k kz kctyo?
1 1
+
1 kx 1 k 1 kz 1 ket kz k kz kct Y
(ﬁ+§)2+(ﬁ+ﬁ)2+(ﬁ+§)2*(j+ 2 )2 ( +¢T2)2+( 03)24‘( 6*2)2*( 2 )?
1 1
+
Ly kzyo L L Ryyo L k2yg L kctyy _kzya kyyo kzyy (o ketyy?
(5 (o 5 (o 5 — (ot 5 (=B (et B (= 2 - (- B
1 + 1 )
kz k kz kc kx k kz kc
(GHoH (G2 (54 2P~ (512 (=2 (o D2 (k)2 (= )

Notice the pattern for signs of k.
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Take the contravariant derivative of this potential, keeping only the terms to
first order in the spring constant k. Remember the contravariant derivative flips
the sign of the 3-vector.

, 1000
Auﬂfzci 0100
—JvGo2loo1o
0001

This is an identity matrix times
work.

:—2, a simple result that required much

s

3.6 In Pictures

Study a solution near R,the relativistic distance o:
/

r
Fr

/— Near here

R O e B i T )
B Y YT Y™

i

Take the derivative of the normalized, linear perturbation solution:

l—g*:—z——@— Ly
b e 3R,

E ?-’
¢

PN P ITPRTA

W



Chapter 4
Relativistic Gravitational Force

4.1 EM Lorentz Force

The EM Lorentz force is caused by an electric charge moving in an antisymmetic
EM field. The effect is to change momentum.

uw U, v vy OmU#
FEM—Q7(A“ — AVH) = a7

e If the sign of electric charge is inverted (¢ — — ¢), Ffy flips signs, so
there are two distinguishable signs for electric charges.

e Like electrical charges repel due to the positive sign of the force.

4.2 EM to Gravity Analogy

e —g¢—++VGm Electric charge to mass charge.
e Change field strength tensor’s symmetry.
1. A—A— A+ A Antisymmetric to symmetric tensor.

2., — Derivatives to covariant derivatives.

4.3 Gravitational Lorentz Force

The gravitational Lorentz force is caused by a mass charge moving in a symmetric
gravitational field. The effect is to change momentum.

Fl=—VGmY(ary 4 gvimy = 20"

e If the sign of inertial and mass charge is inverted ( m — — m), F§ is
invariant, so there is one distinguishable sign for mass.

e Like mass charges attract due to the negative sign of the force.

4.4 Weak Field Force Law

1. Start from the gravitational Lorentz force law:

16
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— VG m Z(Ar 4 Ay = 200

orT

2. Assume local covariant coordinates ( ; — , ):

i VG (e ) 920

3. Recall the weak gravitational field strength tensor:

1000
ARV 2k
G02

4. Substitute the normalized potential derivative (3) into the force law (2).
ouH (6U0 aU)_
“or ar’ ar/’

[== e ]
o o =
(= ]
=)

Expand the velocity, U, — (Uy, — (7) and acceleration,

o k
Fo=—me* (%, - ) ( 2)—(3’“% =0
2

c’ or ' ot

5. Contract the velocity with the derivative of the potential:

k k 2 dmUy 0mU
Fg=m(— 25U, zU) = (555

6. Substitute ¢?72 for — o
kU kU amUy OmU
Fg:m(__o___):( 3707 o )

A first-order differential equation!

4.5 Exact Weak Field Force Solution

The gravitational Lorentz force for a weak field is a first order differential equa-
tion that can be solved exactly.

1. Start from the weak field force law:
k U kK U dmUo OmU
Fh=m(k %, — £ 0)= (2l 2n0)

72 ¢
2. Apply the chain rule to the cause terms. Assume Uy %—T: U %—T:o.

Collect terms on one side
U, kE Uy k. U)_0

(m > —m— =7, m——l—

or c

3. Assume the equivalence principle. Drop m:

oy kU
(e-5% it =0

4. Solve for velocity:
k

- E o
(U(), U) = (Co 67;, 01_3 €+;)

5. Contract the velocity solution:
k 5 k

—2k +2
U“Uuzc%e er—(C_ge “er

6. For flat spacetime (k— 0, or 7 — 00), there are four constraints on the con-
tracted velocity solution:
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UrU, = ( ot 61?2)( at 8R) c?(90) = (OR)* _ 2

B CE’E CE’_ or (at)z_(aR)

True if and only if: c¢y=c ? = Ub flat, C’1 3= —— Uﬁat

7. Substitute c — for Co, a for 01 3 into the contracted velocity solution.

Multiply through by (7) :
k k =
(07)2=¢ 2er (Bt)2— e Per (373)2
e k=0,ort—oo0 Flat spacetime.

k
e ¢’ erk1 Curved spacetime.

4.6 Exact Weak Field Force Solution Applied

Apply to a weak, spherically symmetric, gravitational system.

° k:GM

Spring constant £ is a geometric mass.

o 02=R2—(ct)2=R"” Static field approximated by R'.

e |o|=|cT|=R o and c¢7 have the same magnitude.

o (+io)=(+cT1)? To make a real metric, choose ¢ to be imaginary.

Plug into the exact solution:
GM GM —

Or)2=¢ 2@r(91)2— " r (%)

C

4.7 Compare Metrics: Schwarzschild to GEM

The Schwarzschild metric is a solution of general relativity for a neutral, non-
rotating, spherically symmetric source mass. Write out the Taylor series expan-
sion of the Schwarzschild and GEM metrics in isotropic coordinates to third order

. GM
n ﬁ
1. Schwarzschild metric:
(Or)?=(1-252 +2(55)2 = 2 (55)%)(91)?
GM GM
_(1+2ﬁ+5(%)24'%(623)3)(8}2)2

2. GEM metric:

(0r)2= (1253 +2(552 - S (G007
— (14255 + 255 + 5 (GR)T)

The ten parameterized post-Newtonian (PPN) parameters are identical: v =1,

f=1,{=a1-3=(1-4=0.
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The five underlined terms have been confirmed experimentally in weak field
tests, including;:

e Light bending around the Sun.
e Perihelion shift of Mercury.
e Time delay in radar reflections off of planets.

Strong field tests, such as the lost of energy by gravity waves in binary pulsars,
depend on order 2.5 PPN parameters, which are similar, but not identical.

4.8 The Equivalence Principle
There are three types of mass in a gravitational force equation: inertial mass (m;),
passive gravitational mass (m,), and active gravitational mass (M,).

e FEoOtvos experiments show inertial and passive gravitational masses are
equal (m;=my,).

e Kreuzer’s experiment and measurements of the moon indicate passive and
active gravitational masses are equal (m,= M,).

Because the ten PPN parameters are identical, both the Schwarzschild and GEM
metric are consistent with these results.

4.9 Dogma Dogfight

General relativity dogma: Unified field dogma:
e Field equations are rank 2. e Field equations are rank 1.
e Field equations are nonlinear. e Field equations are linear.
e Gravity binds to energy-momentum. e Gravity binds to rest mass.
e The Equivalence Principle: e The Equivalence Principle:
m,+ > B/ =m;+ Y n°E®/c? m,=m;

No data directly demonstrates the nonlinearity of gravity (too weak).

4.10 Thought Experiment Dilemma

Gravity binds to energy-momentum OR electric charge is conserved (not both).
[ 2

I 2
AutHs e AR
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All the rest mass of one particle becomes the kinetic energy of five others.
If gravity is a function of rest mass only, then the system accelerates without
any external forces applied. Therefore gravity is a function of energy-momentum.
Make one specification: every particle is an electron, with 511 keV of rest mass
and -1 unit of electric charge.
|

-noo_onu Q9 S
F, cee —eooo % 050 ﬂ"fb F,

Box 2 has 511 keV of kinetic energy. Electric charge cannot be split into
fiftths. The box with 6 charges now has 5 moving charges. One unit of electric
charge has been destroyed.

The data for electric charge conservation is exceptionally good.

The thought experiment is flawed, so gravity does not bind to energy-
momentum.

4.11 In Pictures

The spring constant k£ of the derivative of the normalized, linear perturbation

potential is the geometric mass:
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The Taylor series expansion for the Schwarzschild metric in isotropic coordi-
nates is identical to first order PPN accuracy:
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Chapter 5
Classical Gravitational Force

5.1 Breaking Spacetime Symmetry

Spacetime symmetry must be broken to go from the relativistic weak gravitational
Lorentz 4-force to a classical 3-force for both cause and effect.

Contrast the relativistic geometry of Minkowski spacetime with the classic
geometry of Newtonian absolute space and time.

Geometry Minkowski Spacetime Newtonian Space and Time

Utility True, Elegant Accurate, Practical
Interval (071)2=(dt)*— (dR/c)? distance? =d R?+ f(t)
. = ot OR o\ Bt OR \ 5
Velocity (o, ({) =) (UoU)= (g5 cam) = (0,cR)
. oUy 8U\ _ , 8%*t %R oUy 08U\ 9 9%R
Acceleration (8_70’ E) = (C 2 W) <WRO\’ m) = (0, & W)

5.2 Derive Newton’s Gravitational Law

1. Start from the weak field gravitational Lorentz 4-force:
k U kU amUy omU
Fo=m(5 2 - =0)=G %)

2. Apply the chain rule to the cause terms. .
Assume inertial mass is constant in spacetime, U %—T: U 68—7:: 0:

k U kU U, oU
Fo=m(5 0 —57)=(m75m5)

3. Break spacetime symmetry:

o (Up,U)—(Up, U)=(0,cR)

aUy U R
(5 37) — (0,¢ 3TRp)
k5 %R
Fg=m(0,— 5 R) :(07m02m)

4. Assume a gravitational spring constant (k = Gc—2M)

GMm 7 0’R
F“:(07_WR):(O7mC28|R‘2)

5. Substitute: o2 for — ¢?72 in the cause term.
Substitute: — 2 (2)2 for (=2-)2 = (-2)? in the effect term.

or d|R| do
GMm 7 2R
F&=(0,—%—R)=(0,—-m53)

6. Assume the static field approximation: 02= R2 — (ct)2~ R".

21
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5.3

Classical Gravitational Force

Assume the low-speed approximation: :—; o~ g—;:
GMm £ 2R
F'u:(oa R2 R):(Ov_mat2) QED

New Stable Constant-Velocity Solution

Start from the weak field gravitational Lorentz 4-force:

k U kU dmUy OmU
Fe=m(50 - =2)=5%"%)

T2 ¢ T2 ¢

. Apply the chain rule to the cause terms.

U U o
Assume m ——~=m =0 (assume velocity is constant):
w_ k Ug k Uy am 73 Om
Fe=m(5 2 - 57)= U5 U 57)

— — ~

Break spacetime symmetry: (U, U) — (U, U) =(0,c R).
E 5 am
Assume a gravitational spring constant (k= Gc—2M)
FE=(0,- S42 R) = (0,57 cR)

272

. Collect terms on one side:

(e S0, ) =0

Solve for m:
GM

m=mg,ecr

. Assume a static field, |0 |=|cr|=R, and sigma is imaginary. Substitute:

m=mge*r

Gravity causes a change in momentum, the product of inertial mass and velocity.
If the velocity is constant, then the change is in the distribution of inertial mass

in space.
5.4 Rotation Profile of Thin Spiral Galaxies
e Flat velocity profile
After attaining a maximal speed consistent with Newton’s law of
gravity near the core, the velocity profile stays flat with increasing dis-
tance. Newton’s law predicts a "Keplerian" decline for the velocity of the
outer stars.
e Stability.
Thin spiral galaxies are mathematically unstable to small disturbances
along the axis of rotation which should lead to their collapse.
e Mass distribution.

The mass distribution in space falls off exponential with distance from
the center of the galaxy.

The rotation profile for thin spiral galaxies uses Newton’s gravitational law near
the core. For the larger radii where the velocity is constant but the mass falls off
exponentially, the new stable constant-velocity solution may apply. At this time I
have not been able to numerically check this proposal.
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5.5 Early Big Bang

Big bang cosmology has two big problems:

e The horizon problem.
All ~ 10® separate, independent spacetime volumes of the early Uni-
verse must travel at the same velocity to create the uniform black body
radiation spectrum seen in the cosmic background radiation.

e The flatness problem.
The initial conditions must be tuned to one part in ~ 105° so the math-
ematically unstable solution lasts 10!° years.

At this time, I do not know how people think the mass distribution changed in
space during the earliest phases of the big bang. If the distribution could be
described with an exponential function, then the cause of early expansion could
be the new classical constant-velocity solution for gravity.

5.6 In Pictures

Minkowski spacetime versus Newtonian space and time
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Newtonian gravity cannot explain the rotation profile of thin galaxies or the
early big bang.
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The new stable constant-velocity solution has the same momentum profile
(velocity * mass) as the spiral galaxy and [perhaps| the early big bang.
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Chapter 6

Quantization

6.1 Momentum from the EM Lagrange Density

1. Start with the EM Lagrange density written without indices.

SEM - JHA __(Al“j AV’N)(A/A,V_AWA)
=~ ¢1— NG T
— 2 Pelcd - %”Aw — Ay 5 A)
-3 —@P-GP-G@P- GG (PR
S G CRP (G (PH (5)
BRI T S S iy o S

2. Calculate momentum:
_ oL 4 9 04 99
= h\/— 6A” h'\/_( 8:/5 cat?‘! + 8y c@t ;+ E)

cat

3. Momentum cannot be made into an operator:
[A¢, m]|Y) =[A4,0]|¢) =0  Energy commutes with its conjugate.

6.2 Quantize EM Fields by Fixing the Gauge

An EM gauge is a relationship between ¢ and A that does not change the
Maxwell equations. Examples:

o V-A=0 or trace(4*")= gf Coulomb gauge.

o %—i—@ .A=0 or trace(A**)=0 Lorenz gauge.
For EM ignoring gravity, one is free to assign arbitrary values to the diagonal of
the field strength tensor.

Fix the Lorenz gauge in the EM Lagrange density.

1. Start with the Gupta-Bleuler Lagrange density written without indices:

24



6.4 SKEPTICAL ANALYSIS OF FIXING THE LORENZ GAUGE 25

Lo p=— STEA— s (AR )2 — 5 (AR — AVR) (A, — Ay )

= =l %1— B (G
e ¢—%Ax—8—my—8—mz>

ot ot
3G = Gl = G = (G = (G + (52 + (5P + (52
— (G + () +<a;;>2+<6§;y>2—<‘Z§:)2+<"’;z>2+<3;;>2+<3;z>2
R L
Y2 +25§ﬁ§;+25§fa’1 o “wfsfa’%fg‘;a&
2. Calculate momentum:
T =G =G (— B4, e 2 Dy 2 2

c6t
3. Momentum can be made into an operator.
Using the Euler-Lagrange equation, the equations of motion are identical to those
of Laem, except there is only one current.
Ji = ( — cV?2) A+

cOt?

6.3 Gupta-Bleuler Quantization Method

Results of the Gupta-Bleuler quantization method:
e Four modes of transmission:
1. Two transverse waves.
2. One longitudinal wave.
3. One scalar wave.
e Transverse waves are photons for EM.
e Scalar mode of transmission is called a "scalar photon".

e "Supplementary condition" is imposed to eliminate scalar and longitudinal
photons as real particles, so they are always virtual.

6.4 Skeptical Analysis of Fixing the Lorenz Gauge
1. A scalar photon is an oxymoron. Photons must transform like vectors,
even if photons happen to be virtual.
2. Eliminating an oxymoron cannot justify the supplementary condition.

3. A better interpretation for the 4D-wave equations of motion may exist.



26 Quantization

6.5 Momentum from GEM Lagrange Density

1. Start with the GEM Lagrange density written without indices:
or dy 0z
o= pm (y/1- (22— (22~ (%)’

1 oxr ox 0z
——(pg = pm)(cd — 5 Az — 5 Ay — 5 As)

1,,0¢ [0} o} (o)) 0A, O0A, A, 0A,
—5((5) = (57— (@)2 — (5= ()P + (507 + (W)Q +(52)°
0A O0A 0A O0A 0A, 0A, 0A, 0A,
— () G+ (2 + (502 = ()2 + (G0 + (57 + ()7

2. Calculate momentum:

W“:h\/a—agfu =hV/G (=2 24 04y DA

cOt’) cOt’ cOt’ cot
cot

3. Momentum can be made into an operator.

6.6 GEM Quantization

e There are at least two spin fields, one even, one odd.
e Four modes of transmission:
1. Two transverse waves.
2. One longitudinal wave.
3. One scalar wave.
e Transverse waves are photons for EM, like charges repel.

e Longitudinal and scalar modes are gravitons with even spin because like
charges attract.

e GEM predicts the polarization will not be transverse, in contrast to gen-
eral relativity. Gravitational wave experiments (LIGO, etc) may be able to
confirm one theory or the other.

6.7 In Pictures

Quantize transverse modes versus a transverse -+ longitudinal + scalar modes.
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Chapter 7
The Standard Model

7.1 Group Theory

Way to organize symmetry systematically.

Definition: A set S with a binary operation ( x or + ) such that s; x s € S for
all possible pairs of elements in S. If s; X s9 =5 X s1, the group is Abelian, other-
wise it is non-Abelian. A group has:

e An identity.
e An inverse for every element.

e Associative law holds.

7.2 The Standard Model

Predicts patterns of all subatomic particles and three of four forces in Nature:
e U(1) EM.
e SU(2) Weak force.
e SU(3) Strong force.

Says nothing about mass or gravity.

7.3 The Standard Model Lagrange Density

Describes interactions of three forces in a volume.
Lsm= VYD i N
D,u = 8,u - igEMYAp - Z.gweaukTTVVg - igstrong? GZ

o ¥ Spinor matrix.

o g. Coupling constant to force.

o VY Generator of U(1) symmetry.
o 7173 Generator of SU(2) symmetry.
o M08 Generator of SU(3) symmetry.

o A, W, GZ Complex-valued 4-potentials, two with internal symmetries.

27



28 The Standard Model

7.4 Defining the Multiplication Operator

Four components:
1. (a,bi)*=(a,—bi) Complex conjugation.

2. (¢,/T)p:(¢>,—/f) Parity operator.

3. Guw Metric tensor.
An . .
4. TAT Potentials normalized to themselves.
Define multiplication of 4-potentials in the standard model as:
ﬁ Av*P . gtt|At|2 - gxx|Aa:|2 - gyy|Ay‘2 - gzz‘Az‘z - guu‘A”AVLu:ﬁu
AT TA] Im = ZE

7.5 Multiplication Operator in Spacetime

% A\:|p Guw=1.0 In flat spacetime.

Ak AV*P
1] jal
In curved spacetime, mass breaks U(1), SU(2), and SU(3) symmetry in a precise
way (circles get larger).
Y, 7% A\® and the Higgs particle are not needed.

9w =1.0+06 In curved spacetime.

7.6 Interacting Particles for Gravity

No new symmetry was added to the standard model, so no new particle can be
added. Instead, every particle can "act like an even-spin graviton" when it is
involved with a distance measurement of the field.

Photons are mass charge neutral, like gravitons. No exchange of virtual gravi-
tons is needed to follow geodesics in curved spacetime for photons or gravitons.
This is a different way to say the gravitational field is linear.

7.7 In Pictures

U(1) in curved spacetime has an absolute value greater than 1.0.
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SU(2) in curved spacetime has a norm greater than 1.0.
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