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Abstract

In quantum electrodynamics, photons have four modes of trans-
mission, at least mathematically: two transverse modes for electro-
dynamics, a longitudinal, and a scalar mode. The probabilities of
the last two modes cancel each other out for photons in a vacuum,
but that does not have to be the case for a nonhomogeneous equa-
tion. One potential solution to the field equations is found which
depend on the inverse of an interval between two events squared.
The force field created by the potential is constructed by comparison
with the classical Newtonian gravitational field. The Lagrange density
L=—JrA,—3(8"A")(8,A,) can contribute to a scalar mode, but still
has the field equations of Maxwell with the choice of the Lorenz gauge.
A relativistic force equation is proposed, created by the product of
charge, normalized force field, and 4-velocity: a’ggu =kq 6&6" U,. The
solution to the force equation using the inverse square interval poten-
tial is found. Eliminating the constants generates a metric equation,
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(01)2 = e “ 27 (0t)? —e” r (8?%)2, where 7 is a lightlike interval with
almost the same magnitude as the radius R of separation between
source and test masses. For a weak gravitational field, the metric will
pass the same tests as the Schwarzschild metric of general relativity.
The two metrics differ for higher order terms, which makes the pro-
posed metric distinct and testable experimentally. A constant-velocity
solution exists for the gravitational force equation for a system with an




exponentially-decaying mass distribution. The dark matter hypoth-
esis is not needed to explain the constant-velocity profiles seen for
some galaxies. The proposal may also have implications for classical
big bang theory.

1 An opportunity for classical gravity?

The electrodynamic field can be quantized in a manifestly covariant form by
fixing the gauge.[2][6] The starting point is the 4-potential A*. There are four
modes of transmission for photons corresponding to the four degrees of free-
dom: two transverse, one scalar, and one longitudinal. Gupta calculated that
“the probability of the emission of a real longitudinal photon is canceled by
the 'negative probability’ of the emission of a corresponding scalar photon.”
He notes that this does not alway have to be the case for the nonhomoge-
neous Maxwell equations, which is the focus of this work. A scalar photon
would not change signs under a space or time reversal, so its symmetry is
different from the electric 3-vector field and the magnetic 3-pseudo-vector
field, and thus does not have an obvious role to play in electrodynamics.

My hypothesis is that the scalar and longitudinal photons for the elec-
tromagnetic field constitute gravity. The hypothesis makes several predic-
tions even at this preliminary stage. First, the math of gravity and electro-
magnetism should be similar but not identical. The inverse square form of
Newton’s law of gravity was a direct inspiration for Coulomb’s law. Gravity
should be more symmetric than electromagnetism because the mode is scalar,
instead of transverse. The second rank field strength tensor in general rela-
tivity is symmetric while the analogous tensor for the electromagnetic field
is antisymmetric. Since the mode of gravity is orthogonal to electromag-
netism, the charges can be likewise, so there will be no simple relationship
between gravitational charge (mass) and electric charge. Gravitational waves
in general relativity are transverse, so this proposal is distinct from general
relativity. Nature exploits all the math available, so it is unreasonable to
suppose that scalar and longitudinal photons are never used for anything.
Whatever phenomenon exploits the scalar and longitudinal photons must be
similar, but just as important as electromagnetism. Gravity is a natural
candidate.

An algebraic road will be constructed starting from a solution to the
Maxwell equations to a curved metric. Many of the steps will be justified by



the need to be consistent with Newton’s law of gravity in the classical limit.
This unification is thus entirely classical, even though the justification for
the search is in quantum theory. The result of this work is a metric which is
similar enough to the Schwarzschild metric of general relativity to agree with
all the experimental results to post-Newtonian accuracy, yet differs for higher
order terms. Thus the proposal can be confirmed or refuted by more precise
tests of the metric. The second major prediction concerns the velocity profile
of spiral galaxies. For a mass distribution that decays exponentially, the
equations of motion for the scalar photons predict a stable and flat velocity
profile with increasing radius. This eliminates the need for the dark matter
hypothesis.

2 A gravitational field inside Maxwell

Newton’s classical gravitational law arises from a scalar potential. Here is
the scalar field equation:

V2¢ = 4nGp. (1)

For the case of a vacuum, when p = 0, this is known as the Laplace
equation. For a spherically symmetric source, one solution is:

¢ = —#- (2)
N
The problem with the field equation is that the Laplace operator does
not have a time differential operator. Any change in in the mass density
propagates at infinite speed, in conflict with special relativity.[11, Chapter
7] One way to derive the field equations of general relativity involves making
Newton’s law of gravity consistent with the finite speed of light.[10]
A way to repair the field equations is to use the D’Alembertian operator,
which is four dimensional. That expression is identical to the A’ component
of the Maxwell equations with the choice of the Lorenz gauge:

D2AF = drkJ*. (3)

If one is studying scalar or longitudinal modes, the hypothesis is that
J# is the mass density. If one is working with transverse modes, J* is the



electric charge density. Since the modes are orthogonal, the sources can be
also.

To be consistent with the classic scalar potential yet still be relativistic,
the potential must have 22, y?, 22, and t2. This suggests a particular solution
to the field equations (Eq. 3):

1
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5,0,0,0). (4)

This potential is interesting for several reasons. It is the inverse of the
Lorentz-invariant interval squared. Like mass, the 4-potential will not be
altered by a change in an inertial reference frame. The interval between
any two events will contribute to the potential. General relativity applies
to any form of energy, including gravitational field energy. A potential that
embraces every interval may have a broad enough scope to do the work of
gravity.

The potential also has serious problems. Classical gravity depends on an
inverse square force field, not an inverse square potential. Taking the deriva-
tive of the potential puts a forth power of the interval in the denominator.
At this point, I could stop and say that this potential has nothing to do with
gravity because it has the wrong dependence on distance. An alternative is
to look for an algebraic way to repair the problem. This is the type of ap-
proach used by the early workers in quantum mechanics like de Broglie, and
will be adopted here. The equations of motion (Eq. 3) can be normalized to
the magnitude of the 4-potential:

02 A+
Al

Since the magnitude of the potential is the inverse interval squared, the

resulting equation has only an interval squared in the denominator. An

interval is not necessarily the same as the distance R between the source and

test mass used in the classical theory. However, I can impose a selection rule

that in the classical limit, the only events that contribute to the potential

are those that are timelike separated between the source and the test masses.

It takes a timelike interval to know that the source is a distance R away.
Action-at-a-distance respects the speed of light as it must.

= 4rkJ". (5)



3 Search for the source mass

Where is the source mass in the potential? All that has been discussed so
far is an interval, a distance, nothing about mass. An idea from general rela-
tivity will be borrowed, that mass can be treated geometrically if multiplied
by the constants C% The distance between the Earth and the Sun is ap-
proximately 1.5210*'m, while the Sun’s mass expressed in units of distance,
G—l\gfﬁﬂ, is 1.52103m, eight orders of magnitude smaller. The overall length of
the interval will not be changed noticeably if the spatial separation and the
Sun’s mass expressed as a distance are summed. However, the force field is
the derivative of the potential, and any change in position in spacetime will
have a far greater effect proportionally on the smaller geometric mass than
the spatial separation. Make the following change of variables:

GM
2c2A

' GM
B - ﬁ:§+w—|ﬁ, (6)

where A and B are locally constants such that 72 = A% — Eﬂ. The
change of variables is valid locally, but not globally, since it breaks down
for arbitrarily long time or distance away. General relativity is also valid
locally and not globally. The derivative of the normalized interval squared is
approximately:

t - t'=A+ t
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This should look familiar, remembering that employing the event selection
rule from above, the magnitude of 72 is almost the same as R?, differing only
by the geometric mass of the source.

4 A Lagrangian for four modes

Gupta wanted to quantize the radiation field using a form that was manifestly
covariant in its explicit treatment of time and space. He fixed the gauge with
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this Lagrange density:

1
L= A, = (0A,) — (0" A A @,A, —0,4,). ()

The field equations for this Lagrangian are the same as choosing the
Lorenz gauge (Eq. 3). The problem with the Lagrangian is that the field
strength tensor is antisymmetric. Due to the zeros along the diagonal, it
cannot contribute directly to a scalar mode. What is needed is a Lagrange
density that could contribute directly to the scalar mode but still have the
same field equations. Here is such a Lagrangian:

L=—JrA, - %(a“A”)(auA,,). )

This is not as miraculous as it might first appear. It is the first of four
terms generated in the contraction of the electromagnetic field strength ten-
sor. In essence, information is not discarded, which is what happens in
making the field strength tensor antisymmetric. The one remaining modifi-
cation is to normalize both the Lagrangian and equations of motion to the
size of the potential.

5 From a 4-force to a metric

A relativistic 4-force is the change in momentum with respect to the interval.
The covariant force law is similar in form to the one for electromagnetism
except that the second rank tensor is asymmetric and normalized:

op* ou# om o+ AY
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In the first application of the force law, assume the derivative of the
mass with respect to the interval is zero. For the scalar photons, assume the
charge ¢ is the gravitational test mass. Experiments have demonstrated that
gravitational and inertial masses are equal.[16] The inverse interval squared
potential leads to the following equations of motion:
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Solve these second-order differential equations for the spacetime position:
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where Ei is the exponential integral, Fi(t) = [*_ < —dt. The exponential
integral plays a role in quantum mechanics, so its presence is interesting.

Eight constants need to be eliminated: (cl,Cl) and (02,62). Take the
derivative of the spacetime position with respect to 7. This eliminates four
constants, (ca, ﬁz) The result is a 4-velocity:
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In flat spacetime, U, U* = 1, providing four more constraints. Spacetime
is flat if M — 0 or 7 — oo, leading to e* EN
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Solve for ¢? and ﬁl . ﬁlz
g = 2y

Substitute back into the flat spacetime constraint. Rearrange into a met-
ric:

(07)2 = 7237 (8t)? — 27 (OR)2. (16)

As expected, this becomes the Minkowski metric for flat spacetime if

M — 0 or 7 — oo. For a weak field, write the Taylor series expansion in

terms of the source mass over the interval to second-order in %—Af:
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Contrast this with the Schwarzschlld solution in isotropic coordinates
expanded to second order in $%[11, Eq. 31.22):

o = (1 — zi—]‘; + Q(Gﬂé) )02 —
1+ 2(?2]\; )+ )08’ + Gﬂé ). (18)

The magnitude of the hghthke 1nterval 7 in Eq. 17 is nearly identical
to the radius R in the Schwarzschild metric, the difference being the geo-
metric mass of the source included in the interval 7. The metric for the
scalar potential will pass the same weak field tests of general relativity as the
Schwarzschild metric to post-Newtonian accuracy, which does not use the
second order spatial term.[16] The difference in the higher order terms can
be the basis of an experimental test to distinguish this proposal from general
relativity. Since the effect is second order in the field strength, such a test
will challenge experimental techniques.

The two metrics are numerically very similar for weak fields, but mathe-
matically distinct. For example, the Schwarzschild metric is static, but the
new metric contains a dependence on time, so is dynamic (but only locally,
for small amounts of time). The Schwarzschild metric has a singularity at
R = 0. The metric for the scalar photons becomes undefined for lightlike in-
tervals. This might pose less of a conceptual problem, since light has no rest
mass, and the transverse mode describes the motion of massless particles.

6 A constant velocity profile solution

There are two problems with a classical Newtonian gravity explanation of
the flat velocity profiles of thin spiral galaxies with a mass distribution that
decays exponentially. [4, 8, 9, 15] First, the galaxies should have a Keplarian
decline in the velocity profile with distance.[12] Second, a thin spiral galaxy
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is not stable a stable solution because a small disturbance should cause it
to collapse.[13] The work on dark matter is an attempt to remedy these
problems.

In the previous section, the system had a constant effective point-source
mass with a velocity profile that decayed with distance. Here in an attempt
to explain the spiral galaxies, the opposite situation is examined, where the
velocity profile is a constant, but the mass distribution decays exponentially
with distance. The force equation in this situation is:

wom _ onA”

U 5 =M A U,. (19)
Gravity’s effect is on the distribution of mass over spacetime where the ve-
locity is constant. Make the same assumptions as used before. Presume
an inverse interval squared potential. The interval 7 has nearly the same
magnitude as the distance between the source and test masses, except that
it includes the source mass expressed as a distance. Assuming the equiva-
lence principle this time does not lead to the cancellation of the test mass,
but instead allows the test mass to be the focus of the following differential
equation:

((%T GM )y a_m_G_M m)) = (0, 7). (20)

272
Solve for the mass ﬂow.

(ym, 7 Bm) = (ce*, Ce ). (21)

The velocity is constant, so it is the test mass distribution that shows an
exponential decay with respect to the interval, which is numerically almost
the same as the radius. This is a stable solution. If the test mass keeps
dropping of exponentially, the velocity profile will remain constant.

Look at the problem in reverse. The distribution of mass has an exponen-
tial decay with distance from the center. It must solve a differential equation
with the velocity constant over that region of spacetime like the one proposed
(Eq. 20).

The exponential decay of the mass of a disk galaxy is only one solution
to the gravitational force equation (Eq. 10). The behavior of larger systems,
such as gravitational lensing caused by clusters, cannot be explained by the
Newton’s law.[1][5][14] It will remain to be seen if this proposal is sufficient
to work on that scale.



7 Future directions

An algebraic path between a solution to the Maxwell equations and a classical
metric gravitational theory has been shown. No effort has been extended
yet to quantize the unification proposal. Like the early work in quantum
mechanics, a collection of hunches is used to connect equations. One is
left with the question of why this might work? Fortunately the answer is
subtle enough that I did not have to mention my own area of study, four
dimensional division algebras. The action of a gauge invariant theory cannot
be inverted to generate the propagator needed for quantum mechanics.|[7]
Fixing the gauge makes the action invertible. This may appear to be a
technical feature, but the author believes this is vital. If the operation of
multiplication surpasses what can be done with division, then Nature cannot
harness the most robust mathematical structure, a topological algebraic field,
the foundation for doing calculus. Nature does calculus in four dimensions,
and it is this requirement that fixes the gauge. In the future, when we
understand how to do calculus with four-dimensional automorphic functions,
we may have a deep appreciation of Nature’s methods.

For a spiral galaxy with an exponential mass distribution, dark matter is
no longer needed to explain the flat velocity profile observed or the long term
stability of such disks. Mass distributed over large distances of space has an
effect on the mass distribution itself. This raises an interesting question: is
there also an effect of mass distributed over large amounts of time? If the
answer is yes, then this might solve two analogous riddles involving large
time scales, flat velocity profiles and the stability of solutions. Classical big
bang cosmology theory spans the largest time frame possible and faces two
such issues. The horizon problem involves the extremely consistent velocity
profile across parts of the Universe that are not casually linked.[11, p. 815]
The flatness problem indicates how unstable the classical big bang theory
is, requiring exceptional fine tuning to avoid collapse.[3] Considerable effort
will be required to substantiate this tenuous hypothesis. Any insight into
the origin of the unified engine driving the Universe of gravity and light is
worthwhile.
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