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Abstract

Surely I must be joking, since this must have been tried and shown to fail! Alas, the literature is
sparse on the topic. One published fear is that it is not possible to construct a 4-vector field equation
where like charges attract. That objection is easily overcome by one well-placed minus sign in the
Lagrange density. A second known but not often discussed problem is to find a potential that is phys-
ically relevant. It is trivial to find a relativistic 1/distance~2 potential whose derivative when used in
a force equation is non-physical. Using 4D normalized linear perturbation theory near a classical 1/R
potential results in a force with the correct distance dependence.

A dynamic metric equation (the Rosen or exponential metric) solves the rank 1 field equations. This
metric is consistent with the weak and strong equivalence principle, as well as the classical tests of
general relativity to first order parameterized post-Newtonian accuracy. It should be distinguishable
from the Schwarzschild solution at second order PPN accuracy, making this proposal possible to test.
A key technical question is whether the proposal is "background free", which may make for interesting
discussions.

It may even be possible to quantize the 4D field equations using 2 spin fields: spin 1 for EM and spin
2 for gravity. A source-free linear theory consistent with the equivalence principle is a good thing!
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The Big Picture: A 4D Slinky
Light and gravity behave like a simple harmonic oscillator, or slinky, in four dimensions.
e Light is created by electrons wobbling (transverse modes).
e The Earth has wobbled around the Sun 4 billion times (scalar and longitudinal modes).
A thought experiment: Imagine a cup that could hold neutrinos still. Turn that cup over. The neutrinos

would wobble through the Earth as a SHO, cycling to the other side of the Earth and back every 88 min-
utes. Because the acceleration is in the direction of the velocity, this is a longitudinal wave.
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Field Equations and the Exponential Metric

EM Lagrange Density

The Maxwell equations are the most successful field equations in physics.
e Like electric charges repel.
e Antisymmetric field strength tensor.
e Exterior derivatives.

e Spin 1 field.

Lem=— JF Ay — o (AVF — AP) (A — Apy)

A

Generalized EM Lagrange Density
Extend the success of Maxwell.

e Like electric charges repel and like mass charges attract.

e Asymmetric field strength tensor tensor,

the sum of antisymmetric and symmetric tensors.



e Exterior and covariant derivatives.

e Spin 1 and spin 2 fields.
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Apply Euler-Lagrange

1. Start with the Euler-Lagrange equation, %: (82%)"’ , written without indices:

o _ (8,08 \ 9, 8L \ 8, 88 \ 8, g
o =<llai) ~ o)~ o)~ o)

oL 8, 8¢ a oL d oL [5} oL
o= claioms) ~ 03 (o om) ~ g oramy) — 32 sy

(%) a(—- %) " a( - 2=y
oL 0 oL 19} 0L 0 0L 19} oL
CaAy :C(E(a(ag% ) — a(a(_%)) - @(8(7%)) - 5(8(—%)))

oL _ (9, 0L y 8 0L 0 oL 0 0L
_C(at(a(a;;z)) 3_1”(8(_65:1:)) 321(6(—%)) 32(6(_6512)))

2. Write out GEM Lagrange density without indices:
L=—((pg—pm) ¢ — (Jg — Jm)A")

— 5 () = (50 = (517 = (3 = (G5 + (32 + (o) + ()

2\\cot ox oy 0z cot ox oy 0z
0A 0A 0A OA 0A, 0A, OA, 0A,
— (G (G + (T = () + (G + (5 + (57
3. Apply:

0? o? 0? o?
—(Pg— Pm) 0= gat i+ egf et

24, 924, 924, 82 A,

T _ gz _ _ _ _
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Jy_ gy 9Ay A, 0'A, 04,
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824 524 82A 824
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Jo—JIn="5a — o2 — € a2 o




4. Executive summary:

T b = C2Ar

Classical Fields
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The classical fields E and B together make up the antisymmetric tensor (A*># — A#+¥). Introduce three
new fields, €& and b  which have EM counterparts, and a  4-vector field
g* for the diagonal components of the symmetric tensor (A¥i# + A#Y),

o E=— % - Cﬁqﬁ Electric field.
o« €= % — C%Qﬁ —T,% A Symmetric analog to electric field.
. é = C% X /Y Magnetic field.

. [; =—0'AT - IA' + ngj A  Symmetric analog to magnetic field.
o gH=AMKE_T HH A° Diagonal of A¥i# .

3+3+3+3+4—16 fields total.

All three new fields transform differently than axial or polar vectors.

Classical Fields in Detail/public _html/quaternions/talks/General em

1. Start with the asymmetric unified field strength tensor A”** written as a matrix:

v=2ao v=2A, V——Ay v=A,
. 0 o9 00 0A; 10 0A 20 0A, 30
S — - _ g P2 g -y _ g Pl g
5 2 _T,0A T4 LT A 2 —T70A
. 0 o¢p 01 0A, 11 0A 21 0A, 31
W— L o __ 7T o _ Y g __ pZltr a
=—C3 €5 r;tA C s r;, A €5 r/tA C s rytA
. o o 02 0A, 12 0A 29 OA, 392
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oy oy g oy g oy g oy g
. I°] o¢ 03 0A, 13 0A 23 0A, 33
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2. An antisymmetric and symmetric sum equal to A¥i#:

0A, 8¢ A, 8¢ DA, 8¢
0 o 1 Ca at T Cay o 1 Co;
I6) OA, BA BA OA, OA,
_ o 0 —cZ=+4c
AVil _ AWV — 61‘ ot oz 0z
(20 _0Ay, 04, 04, 0 (OAs | 94,
E)y ot Oy oz Oy Oz
8¢ 0A, A, DA 0Ay OA.
82 ot ¢ oz ¢ oz Z tc Oy 0
AVib . AV
08¢ 1700 go 0As _ 0¢ 01 fo 94, 8¢ 20 fo 0A. 04 30 fo
2(8t L%A%) ot 2t A 5t ~Cay 22 A o ar Y A
BA . _ 01 go _ BA 11 o _ A, HA. _ 21 po A, _ _ 31 Ao
. -2 A 2(— = 6 L, tA%) €~ C 5y 22t A o az 2>t A
- 02 fo 0As 12 go A, 22 go 8A. 8A, 32 po
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_ 67‘1’ A, _ 03 g0 __ OAz _ 6.A.z 13 gpo __ A, _ BAZ 23 Ao _ 33 Ao
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3. The asymmetric tensor written in terms of the five fields:

gt ez— by ey—Ey e,—E,
e, + FE, Iz b,— B, by,+ B,
ey+E, b,+ B, 9y b, — B,
e.+E, by—By b+ B, gz
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Generalized Gauss’ Law

Covers both gravity and EM.

Method: % (EM law + gravitational analog) + diagonal terms = field equations.

pg—pm=5(V-E+V &)+ 2%

cot
S VR % i Y VN i
Pa=Pm=35\ " 500t ~ Coz2 " ayar  Cayr  dzot a2
024, _ O % | 9%A. _ 0% | 0%
Oz Ot 822 By Bt 0y? 020t 022 cot?
_ 99 8¢ ¢ 2
pq_pm_catz_cf)wz_ 0y? 322 D¢

e Gauss’ law results in the physical situation with no mass density and no change in the field €.

e Newton’s [relativistic] gravitational field equation results in the physical situation where there is no
electric charge density and no divergence of the field E.



Implications for forces: Newton’s field law implies an attractive force for mass, while Gauss’ law indicates like electric charges
repulse.

Gen. Gauss Applied

Calculate the average general charge density for a proton in a 1 cm sphere.

1. Electric charge density is charge/volume:

_1.60x1079C

—14 C
Pa= 7 (0.0100m)? 382107735

2. Mass charge density is v/G m,/volume:

/667 x10" T mP g~ s 21.67x 10710C
2% (0.0100m)3

=3.25x 1077 5

Pm

Thirteen orders of magnitude different!
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The Exponential Metric

GM

G M -
(Or)2 = P (91)? — 2 (22

This dynamic metric has exactly the same 10 Parameterized Post Newtonian (PPN) values as the
Schwarzschild solution in general relativity:

7:5:1, fzoq:azzaszC1:C2:C3:C4:0-

e Consistent with the weak equivalence principle (Minertial = Mpassive)s

The Nordtvedt effect:

2

n=4f—vy—-3— %f — Qa1+ %ag - gCl — %Cg, shown to be zero  (Will, 8.9).

e Consistent with the strong equivalence principle (mpassive = Mactive) »
Kreuzer’s experiment:

Mactive _ 1 4 % (3 :;—i, shown to be 1 (Will 9.27).

Mpassive



e Consistent with weak field tests, such as bending of light:
00imax = (1+7)1.75"  (Will 7.23).

e Gravity waves travel at the speed of light. Since the metric is fully conservative, there cannot be a
dipole due to conservation of momentum, indicating the quadrapole is the lowest mode of emission.

e Experimentally different for 2nd order PPN values.

e Exponential functions are the calling card of deep physics.
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Metric Solves Gravitational Gauss’ Law

1. Start with Gen. Gauss’ law:

pg—pm=5(V-E+V &)+ 2%

2. Assume no electric charges or electromagnetic fields. Assume static:
Pm=— V.e
3. Write out covariant derivative:
A

pm:—ﬁ-(ﬁ—cﬁqﬁ—FaOiAa)

4. Want everything to depend on the metric like in general relativity.

Choose a constant potential s that % —cV¢=0.

Prm = 6 . FJOi A° [Note: the divergence of the Christoffel symbol, cool!]
5. Write out the definition of the Christoffel symbol of the second kind:

=V "5 4ap (97" + g"P1 — g7F) A7
6. Static, so g?»%=0. Diagonal, so g?># =0.

— 1 .
pPm=V -3 goo g0t A®



7. Write out in terms of the components:

GM GM GM
22— -2 22— -2
2r/22 422422 (9 / 0 / 0 /
0 —_( c? 2+y2+z e c2 12+y2+z2) 40/2 y(e 222+ y2+22 e c? z2+y2+z2) 40/2

GM

+2(e 2 T 0 e‘QW)AO/Q
V4

8. This is the singular 1/R solution to the Poisson equation with canceling exponentials.

A physically-relevant, dynamic metric solves the GEM field equations.

vetve

A Background-Free Theory?

A dynamic metric solves the field equations,

«"+ metric must be free enough to solve the differential equation!
versus

The 4-potential was varied, not the rank-2 metric

"+ the metric must be fixed!

Note: varying the metric field should apply to a rank 2 theory, not a rank 1 potential theory.

SA< "7-R 1\[}5%—-?!.15-‘ A{’.

A Symmetry in Covariant Derivatives?

A covariant derivative (AVi# = AY:# 4+ T #” A%) is the sum of two parts that are not tensors:
e A" is all about changes in the potential.
o [ #” A% is all about changes in the metric.

Until something is specified about either the potential or the metric, a covariant derivative could be any
continuous combination of the change in potential and change in the metric.

Does that sound like a symmetry?

Is there a name already for this?

o 4 S
e RAt - e R dR or VA



Deriving the Exponential Metric

4D Wave Equation Vacuum Solution
1. Start with 4D wave equation, no source:
02A4#=0

2. Guess a solution with similarities to previous:

c2

(a2 + g2+ 22— 212) 71, 0,0, 0) = Y42 (L G)

3. Take derivatives:
C—gt(:lﬂ—i- Y2+ 22— 62t2)_1:—|—20t(x2+y2+22_ c2t2)_2
% (@24 2+ 22— 212) 1= — 23 (2% + 2 + 2% — 2 42) 2
a% ($2+ Y2+ 22— 62t2)*1 =— Zy(x2+ Y2+ 2% — C2t2)72
6% (:L“2—|— y2+z2 _ 62t2)_1: _ 2Z(Cl)2+ y2+ 22 CQtQ)_Q
4. Take second derivatives:
D (42007 =4+ 2(22+ P2+ 27— A1) 2+ 82 (@2 + P+ 27— P12

2(—200Y) =—2(22+ >+ 22— A2 24+ 82" (a2 + P + 2% — 2 1F)

ox
a%( —2yo ) =—2(2? + g+ 22— A1) 2+ 8y (a2 + y? + 22 — 2P !
2 (—2207Y) =22+ 12+ 22— A7) 2+ 82" (a? + 2 + 22— 21P)
5. Sum:
ra ok vk onig qup
o« 22+ y2 +22—-c2t?2=0 Practical value: Singularity is the lightcone.

1
z2+y2+z2—c2t2

10
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Normalized, Perturbation Solution

1. Start with 4D wave equation solution:

v VGh 1 = vGh ;1 R
AY === ( ) (-5,0)

c2 w2+y2+z2_62t27

2. Normalize so that the magnitude of A*isequal toone:

AV c 1 — =g
A =1m1= 75 (arpeaman 0= (1,0)
- 2

3. Perturb z,y, z,and ¢ linearly with a spring constant k:

A'v c 1 =
Av=A = c 0)
v k kz ke
41 VG TP (G (DY

3

o g SR

1 izl 3 i
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Derivative of the Normalized, Perturbation Solution

1. Start with the normalized, perturbation solution:

Ay_ A’" ¢ ( 1 6)_ c (0’2 0’
—JAv] T L L kmyvo, (L1 | kyya, 1 | kzyp 1 | ketyg? o/ o2’
A VG (4 P (G S+ 52 (G + ) VG o
2. Expand:
V—L( 1 6)_
- - 2,2 2,2 - 2.2 - 22,2 1Y)
VG Gt ot T G A )+ G ot ) - Gt )

3. Take derivatives:

OAY 3 o ~ C
E:\/E mk‘i‘O(kz): i‘i‘O(lﬁ)Z)

) BNl s SO ()

R Nl Nl
1 . .

. — An inverse square distance dependence.
ag

o« £k A small number with units of distance.

11
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Only Weak Gravity

A potential that only applies to gravity not EM will have a diagonal field strength tensor.
e The sign of the spring constant k does not effect solving the field equations.
e The sign of the spring constant k does change the derivative of the potential to first order in k.
e Therefore a potential that only has derivatives along the diagonal can be constructed from two

potentials that differ by string constants that either constructively interfere to create a non-zero
derivative, or destructively interfere to eliminate a derivative.

diagonal SHO A* = <

VG
1 1
( +
(G+e)? (G2 H (545 (o) (55 + (5 )+ (g5~ )~ (5 +og)?
1 1
_|_
(e H G+ (G52 (5 +9)?  (GTo) (G- (G- a5
1 1
_|_

k k k k k k k k
(5H ol T (st P+ (53 (5592 (5 )+ (5t (02 (5 )
1 1
(Lphzya (Lo hyyay (L keyy (1 kety, + (L —koya (L _kuyp ke (L kct)z)

V2 o2 V2 o2 V2 o2 V2 o2 V2 o2 V2 o2 V2 o2 V2 o2

Notice the pattern for signs of k.
Take the contravariant derivative of this potential, which tosses in a minus sign.
Keep only the terms to first order in the spring constant k.

10
Avibee €k [0
=Vve o2 0o
00

CZ

This is the identity times N

0’“—2, a simple end result that required much work.

12



Weak Field Approximation

1. Start from the gravitational force law:

Fli=—YE mU,(Av#+ Avv) = 220"

2. Assume local covariant coordinates ( ; — , ):

Fi=— Y8y, (4vs + Am») = 2"

3. Recall weak gravitational field strength tensor:

0
0
1
0

D

q

N
coo~
cor~o
—ocoo

4. Check units of A* to the derivative of the normalized potential:

VG AVt Y VL

tym (VL 12
A
|AY| L1 L
N — == —
ot t t 2

5. Substitute the normalized potential derivative into the force law. Expand the velocities. Assume
spherical symmetry:

k = dmUy OmU
F=—m%(Uo=0) (}9) = (%52, 250)

6. Contract the rank-1 velocity tensor with the rank-2 derivative of the potential:

k = OmUy OmU
Fg=m 5 (=U,U)= (%%,

7. Substitute ¢2r? for — o2

= amUy, omU
_U):( 7(’?7'0’ ;nT)

13



Exact Solution

The gravitational force for the weak field is a first order differential equation that can be solved exactly.

1. Start from the gravitational force for a weak field:

k ~ amUy dmU
Fg:mm(Uo,—U):( T(;LTO’ z;nT )

2. Apply the chain rule to the cause terms. Assume Uy %—T =0 9™ —y.

Collect terms on one side:

Uy k oU E 73y
(mw—mFUo,mE—{—m—U)—O

3. Assume the equivalence principle. Drop m:
AUy k oU | k 13\ _
(T —em Vo5, +5=2U) =0
4. Solve for velocity:

k

(U[), [j) = (C[) 6_;, 61_3 €+;)

S

5. Contract the velocity solution:

k

k
ok = 42
U“Uu:c%e et —(Cl_ge “eT

6. For flat spacetime (k— 0,or7— 00), there are four constraints on the contracted velocity solution:

UrU, = (c ot aé)( at aR') _ c*(0t)* — (9R)* — 2

or o\ o0 T o) T e (B
c

ot = 8R _ 13
5-=Uoftat, C1-3=75-=Uhgat

True if and only if: c§=c3 5y

ot 5 OR
ar for Coy =

o for 6_"1_3 into the contracted velocity solution. Multiply through by

7. Substitute ¢
GOk

(Or)2=e 27 ()2 — " 2er (22

.

Exact Solution Applied
Apply to a weak, spherically symmetric, gravitational system.

. k_GMM_) L3 mﬁ—
T2 mt2 2

L Gravitational source spring constant.

o 02=R%2—(ct)?= R” Static field approximated by R’.

14



. |U | = |CT | =R o and c7 have the same magnitude.

o (+i0)?=(+cT)? To make a real metric, choose o to be imaginary.

Plug into the exact solution:

GM GM —
(0r)2=c *n (@) e R (%)

|— ==

i

-
i

1

FRdrehy W N
=
=

3 T SR TR

b g, i o
W b
I

LL.'

Compare Schwarzschild to GEM Metrics

Write out the Taylor series expansion of the Schwarzschild and GEM metrics in isotropic coordinates to

. . GM
third order in 7.

1. Schwarzschild metric:

GM GM 3, GM GM 3/, GM 1 ,GM =y
O =(1-255+2(57)°— 5 (Gp))01) = (1 - 255 +5 (55)* + 5 (5R)))(OR)?

2. GEM metric:

(O =(1=2 G+ 25~ 3 (F002 - (L= 25 + 2 G2+ (G (2

Compare the two metrics:
e Identical for tested terms of Taylor series expansion.
¢ Different for higher order terms, so can be tested (not easy).

e GEM is more symmetric, uses exponentials!

@Y + @y o« B o« e

) . — 2 ]

C-:. R . :L.L l& 25.2 5 5.‘5
Ll -2z A5 -5

e : e i

" i i 13
GEM TR, T2,y 5
A 2 2 13

15



Classical Gravity and A New Constant Velocity Solution

Lightlike Event Symmetry Breaking

Spacetime symmetry must be broken to go from the relativistic weak gravitational force to a classical
force for both cause and effect.

Contrast the relativistic geometry of Minkowski spacetime with the geometry of Newtonian absolute space
and time.

Minkowski Spacetime ~ Geometry Newtonian Space and Time
True, Elegant Utility Accurate, Practical
(07)2=(dt)> = B mmgerval distance? =d F2# f(1)
(Us, U) =(c 2, ‘;—f) Velocity (UO,U)E(BT;| M') (0,c¢R)
(2o, 20y _ (2L 2By pcceleration (220, 20 — (0, ¢? ;“R"z)

Ix — - —

Newton’s Law Derivation

1. Start from the gravitational force for a weak field:

k = amUy amU
Fg=m (U, -U)= ("%

2. Apply the chain rule to the cause terms.

@

om 7 Om
Assume Uo;— U 5=

k = U, ou
Fe=m_— (Up,—U)=(m52,m%)

3. Break spacetime symmetry:

A~

o (Up,U)—(Uy, U)=(0,cR)

oU, U 2R
( 87'0’ 87') (0’62 W)

16



k 5 2R
Fg:mﬁ(oa_R):(oamC2a|R|2)

4. Assume the gravitational spring constant (k= Gciw)

GMm 7 52 R
ng(oa_WR):(OamCQ 6\R|2)

5. Substitute: o2 for — ¢?72 in the cause term.

Substitute: — c2 (%)2 for (i)zz

0 \92 .
B1A] )? in the effect term.

(35

F=(0,%4m Ry = (0, —m 2

or2

6. Assume the static field approximation: o2 = R? — 2~ R'.

82 . 82

Assume the low speed approximation: 3 =5

—

FE=(0,“%"R)=(0,-mZF)  QED

R2 ¢2

Stable Constant Velocity Solutions

1. Start from the gravitational force for a weak field:

k = amUy amU
Fg=m (U, - U)= (5% %)

2. Apply the chain rule to the cause terms.

U 80 - -
® =m == =0 (meaning assume velocity is constant):

Assume m 5 5r

Fh=m—5 (Up,—U)= (U 22U 2

or
3. Assume classical and conservative: Ug — 0.
k 2 om
Ft=m%(0,-0)=(0,220)

4. Assume the gravitational spring constant (k= C';—2M)

17



5. Collect terms on one side:

0 GM 3
(2 + S0 (0,0) =0
6. Solve for m:

GM
m=mge "

7. Substitute: R for c7 which depends on exactly the same assumptions used in the metric derivation
(static field, |o |=|7|=R, and sigma is imaginary):

GM

m=mgpeRr

From a Relativistic 4-Force to the Constant Velocity Solution

Start from a general 4-force law:

Fu— doV*
dr

e 4-velocity, VX
Vi=c(y,78)

e Spacetime interval, 7.

The Chain Rule for a 4-Force

The change in momentum with respect to spacetime equals
the change in 4-velocity with respect to the interval plus

the change in mass with respect to the spacetime interval.

dpVH _ dVH
=p—

dp
ez
d7 dT

dr

18
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Relativistic to Classical Force
e 4-velocity becomes a 3-vector:

VeV

e Change in spacetime becomes either
dT— dt, a change in time for timelike events in Newtonian space and time or

dr—d |R/ C|, a change in space for spacelike events in the complex tangent space.

l’: aélt ,’\ B é_t | i-t_..

!
I
[
\ - T | |
e T = mmeeemede—e - 4 i =
N R LR
B o S St S ey e i
klﬁ" ’r{""‘\‘.- | I
- H b e
'/{ l{/r' E '\\‘.C'.‘ i i
Spacetime Space and time Tangent Space

The completely arbitrary location of the spacetime origin means in the transformation from Minkowski
spacetime to Newtonian space and time, the slope of some worldline for massive particles are real, while
others are undefined in space and time unless the complex tangent space is included.

The Complex Tangent Space

The distance squared, (d7)2, must be a real, positive definite number.
For spacelike separated events, dR/C > dt.

(d7)2= (idt)? — (idR/c)?
is a real, positive definite number.

it

|

Tangent Space

[ I
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One cannot travel a distance i R, or measure a time i¢, however

gamma, beta, and tau are all real numbers!

A New Direction for the Force of Gravity Hypothesis

GMp
R2 °

The cause of gravity is the same, —

There is a new effect in the direction of the velocity vector in the complex tangent space.

= GMp /pH N V2 os dp 17
F=-=— (R+V)_me+—d|R/C‘V

The new terms are well-formed as far as units and vectors are concerned.

Rocket Science

The Thin Disc Galaxy NGC3198

Not a point source, extending 200,000 light years across.

Outside the core region
e Velocity is constant at 150,000 m/s.

e Mass density decreases exponentially,

mass/area = 37 Exp (-R’/2.23’) solar masses/pc?.

e Total mass is 1.0 x 1040 kg.

it i’@@ Velocity

Tr. MDMEvd; i
P Mags dEl‘uSH'ti

The BIG Newtonian Problems

1. Unstable.

Disc galaxies should have collapsed by now.

20



2. Velocity profile cannot remain flat.

Newtonian constant V solution needs M(R) = f (%)

An exponential drop at large radii is too fast for V to be constant.

S Seen
Mok K.

“l...,. Pmd:(:’fﬂa

Alternative hypotheses:
e Dark Matter.

e Modification of Newtonian Dynamics (MOND).

Test of Hypothesis for NGC3198

1. Start from Newtonian cause equal to rocket science effect:

_GMp vyr9_o _dp v

R? © IR/

2. Collect on one side to form a first order differential equation:

dp . GMpn
(£+ cVRg) V=0

3. Solve for the mass density:
p=kExp (577)
4. Plug in values for the galaxy NGC3198:
G=6.7710 "'mikg s 2 M=1.0r10"kg,
c=3.0210*m/s,V =1.5210°m/s,3.1210%m/’
p=kExp (.48'/R’)
5. For large R:
p=FkExp (.48'/R")~1+kExp (— R'/2.1)
6. Note the similarity to the given mass density, p = 37 Exp (-R’/2.23’).

Conclusion: The new "rocket science" effect of gravity deserves a detailed numerical study to see how
well it agrees with all the data from the center outward.
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Quantum Gravity

Momentum of Classical EM

1. Start with the EM Lagrange density written without indices.

S == 22— LA = (AR A7) (A = Au)

_ 2 0z \2 Oz Ox 0z
= — /1= (22— ()2 — (222 pyled — A, - 24, - 24,

-3 — G- - ) + (G2 + (522
-2+ (G (G- e+ G+ (5)?

. 26Az 99 28Ay o 28A; o6 28Ay 0A. 28A; 0A. 26Am BAy)
cot Ox cot Oy cot 0z 0z Oy or 0Oz Oy Oz

2. Calculate momentum:

_ el L 00 0Ay L 06 0A. 3
mh=h 86A“‘_h G (0, 6x’c@t+6y’cat+6z)

cot

Energy-momentum vector.

3. Momentum cannot be made into an operator:

[Ag, mi]|0) =[A¢,0]|)) =0  Energy commutes with its conjugate operator.

Trt=0

Quantizing EM by Fixing the Lorenz Gauge
Fix the Lorenz gauge in the EM Lagrange density.

1. Start with the Gupta-Bleuler Lagrange density written without indices:

Ca-p=- %"—%J“Au— sea(A” )7 = gAY — A7) (A — Ay )

= — o1 = (23)? — (2 — (o) — puled — oA = G Ay = 2 A)
— () = (522 = (522 — (302 — (G + (522 + (5 + (52)?
— (G2 + (G2 + (522 + (522 - (5502 + (52 + (52 + (5)?
R L = &

0A, OAy OA, OA. OAy OA.
+23w +28z 0z +28y 8z)

O¢ 8A, ¢ DAy O¢ DA.
+2c3t ox +2c8t Oy +2c3t Oz
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2. Calculate momentum:

o oL S~ 8¢ = 1 OA. 0p OA 8¢ OA, , 8¢
T™=hvG aAl‘_h G(_E_V'A’cat_Fa’ caf Tk cat+§)
cot

Energy-momentum vector.
3. Momentum can be made into an operator:
Using the Euler-Lagrange equation [not shown], the equations of motion are identical to those of £ggm!
JE=02AH
Reference: "Theory of longitudinal photons in quantum electrodynamics", Suraj N. Gupta, Proc. Phys. Soc. 63:681-691, 1950.

E

<k
Wl

Gupta/Bleuler Quantization Method
Results of quantization method:
e Four modes of transmission:
1. Two transverse spin 1 modes of transmission.
2. One spin 1 longitudinal mode.
3. One spin 1 scalar mode.
e Transverse waves are photons for EM.

e The supplementary condition is imposed to eliminate scalar and longitudinal modes for photons as
real particles. There can be no scalar or longitudinal modes for a spin 1 4D wave field.

Momentum of GEM Lagrange Density
1. Start with the GEM Lagrange density written without indices:
== (/1= (G = (2 = (550 = (= VG pm ) (6 = G = 554, — 5 AL)

— ()7 = (3= (G0 = (3 = (557 + (G52 + (2 + (5)°

2 \\cot oz oy oz cot "oz - E Oz
0A, 0A, OA, 0A, OA. OA. OA. OA.
_(cﬁt)2+( Sz )2+( oy )2+( 9z )2_(03t)2+( 9z )2+(E)2+( 9z )2)
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2. Calculate momentum:

/ oL I~ 0p OA, O0A, OA
B — — _ v e Ty ARz
Q h GaaA“ h G( cot’ cat’c()t’c@t)
cot

3. Momentum can be made into an operator.

GEM Quantization
e Four modes of transmission:
1. Two spin 1 transverse modes.
2. One spin 2 longitudinal mode.
3. One spin 2 scalar mode.
e Transverse modes are photons for EM.

e Longitudinal and scalar modes are gravitons of gravity traveling at the speed of light, generated by
a symmetric rank-2 field strength tensor.

e General relativity predicts transverse waves, not scalar or longitudinal ones. The LIGO experiment
to detect gravitational waves will be looking for transverse gravitational waves. GEM predicts the
polarization will not be transverse.
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