Generalizing EM

"General Gauss' Law", electric minus inertial current equals changes in 4-potential and the connection.

$$4\pi(\rho_q-\rho_m)=\Box^2\phi=\partial^\mu A_{0,\,\mu}-\partial^\mu\,\Gamma^{\,\alpha}{}_{0\,\mu}\,A_\alpha$$

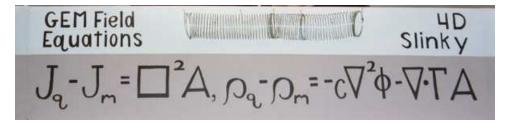
• $\rho_q - \rho_m$ Less total current due to inertia.

• $\rho_m = \sqrt{G} \ m/\text{vol.}$ Mass in units of electric charge $(F = -\frac{(\sqrt{G} \ m)(\sqrt{G} \ m)}{R^2})$.

• $\partial^{\mu} A_{0,\mu}$ Divergence of a potential gradient.

• $\partial^{\mu} \Gamma^{\alpha}{}_{0\mu} A_{\alpha}$ Divergence of the connection.

Standard EM plus a sophisticated handle for spacetime curvature.



Geometric Structure

The way to determine distance, volumes and transformations in spacetime.

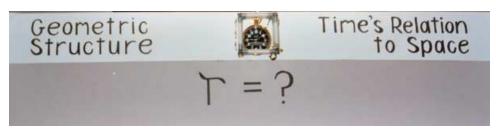
- 1. Presumed
 - Newton: time and space are absolute, no $t \leftrightarrow R$ rotations (boosts).
 - Special relativity: Only inertial observers.
- 2. Background chosen

$$\rho_q = g^{\mu\nu} \partial_\mu (A_{0,\nu} - A_{\nu,0})$$
 Maxwell: Could be any metric, you choose.

3. Background-Free

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi T_{\mu\nu}$$
 General relativity: Solve field equations for the metric.

Any theory for gravity must be background-free



Geometry and Gen. Gauss' Law

Address a critique by Prof. John Baez in the newsgroup Sci. Physics. Research:

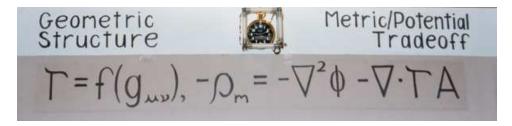
"Instead what really matters is that Sweetser's model is a field theory on Minkowski spacetime, not a background-free theory like general relativity"

Torsion-free, metric compatible connection means there is a unique metric for the connection (Christoffel symbol).

Focus on static point sources, the simplest, non-trivial case.

Disprove the critique with four calculations of charge densities:

- 1. Neutron in flat Euclidean spacetime.
- 2. Proton in flat Euclidean spacetime.
- 3. Neutron in curved spacetime.
- 4. Proton in curved spacetime.



Neutron in Flat Euclidean Spacetime

Newton's law of gravity with units of electric charge.

- $A = (\frac{\sqrt{G} m}{R}, 0, 0, 0)$ 1/R potential using mass in units of electric charge $(F = -\frac{(\sqrt{G} m)(\sqrt{G} m)}{R^2})$.
- $g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ The Minkowski metric.
- $\Gamma^{\alpha}_{\ \mu\nu} = 0$ Connection is zero in Euclidean spacetime.

Calculate the average charge density of a neutron in a 1 cm sphere.

$$\begin{split} 4\pi \left(\rho_{q}-\rho_{m}\right) &= \frac{\text{charge}}{\text{vol.}} = \frac{-4\pi\sqrt{G}\,m}{4\pi R^{3}/3} \\ &= -3\,\sqrt{6.67\,\mathrm{x}\,10^{-11}\mathrm{m}^{3}/\mathrm{kg}\,\mathrm{s}^{2}}\,1.67\,\mathrm{x}\,10^{-27}\mathrm{kg}/(0.01\,\mathrm{m})^{3} \\ &= -4.09\,\mathrm{x}\,10^{-26}\,\mathrm{C/m}^{3} \\ \partial^{i}A_{0,i} - \partial^{i}\,\Gamma^{\alpha}_{0i}\,A_{\alpha} &= \partial^{i}A_{0,i} = -\,\nabla^{2}\phi = \nabla^{2}\left(-\frac{\sqrt{G}\,m}{R}\right) = \cdots = -\,3\,\frac{\sqrt{G}\,m}{R^{3}} \end{split}$$

$$-c\nabla^2 \phi = \nabla^2 (-\sqrt{G}M)/R$$

Proton in Flat Euclidean Spacetime

Newton's and Gauss' law: shared potential, different charges.

- $A = (\frac{-q + \sqrt{G} m}{R}, 0, 0, 0)$ 1/R potential with 2 charges.
- $g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ The Minkowski metric.
- $\Gamma^{\alpha}_{\ \mu\nu} = 0$ Connection is zero in Euclidean spacetime.

Calculate the average charge density of a proton in a 1 cm sphere.

$$\begin{split} 4\pi \left(\rho_q - \rho_m\right) &= \tfrac{\text{charge}}{\text{vol.}} = \tfrac{4\pi (q - \sqrt{G}\,m)}{4\pi R^3/3} \\ &= 3 \left(1.60\,\mathrm{x}\,10^{-19}C - \sqrt{6.67\,\mathrm{x}\,10^{-11}}\mathrm{m}^3/\mathrm{kg}\,\mathrm{s}^2\,1.67\,\mathrm{x}\,10^{-27}\mathrm{kg}\right)/(0.01\,\mathrm{m})^3 \\ &= \left(4.80\,\mathrm{x}\,10^{-13} - 4.09\,\mathrm{x}\,10^{-26}\right)\,\mathrm{C/m}^3 \end{split}$$

$$\partial^{i} A_{0,i} - \partial^{i} \Gamma^{\alpha}{}_{0i} A_{\alpha} = \partial^{i} A_{0,i} = -\nabla^{2} \phi = \nabla^{2} \left(\frac{q - \sqrt{G} m}{R} \right) = \dots = 3 \frac{q - \sqrt{G} m}{R^{3}}$$

Vast difference in the size of charges.

Proton in Flat Spacetime All Potential NO Metric
$$-c\nabla^2\phi = \nabla^2(Q-\sqrt{G}M)/R$$

Neutron in Curved Spacetime

Charge density due to connection, not the potential.

•
$$A = (\frac{c^2}{\sqrt{G}}, 0, 0, 0)$$
 A constant potential with the correct units $(\frac{q}{r} \to \frac{\sqrt{kg \, m}}{s})$.

$$\bullet \quad g_{\mu\nu} = \begin{pmatrix} e^{-2GM/c^2R} & 0 & 0 & 0\\ 0 & -e^{2GM/c^2R} & 0 & 0\\ 0 & 0 & -e^{2GM/c^2R} & 0\\ 0 & 0 & 0 & -e^{2GM/c^2R} \end{pmatrix}$$

This metric is consistent with tests of weak gravity fields.

$$g^{00} = e^{2GM/c^2R}$$
 because $g_{00} g^{00} = 1$.

$$\nabla g_{00} = -2 e^{-2GM/c^2 R} \nabla_{c^2 R}^{GM} \qquad g^{00} \nabla g_{00} = -2 \nabla_{c^2 R}^{GM}$$

Analyze the divergence of the Christoffel symbol.

$$-\partial^{i} \Gamma^{\alpha}{}_{0i} A_{\alpha} = -\frac{1}{2} \partial^{i} g^{\alpha\beta} (\partial_{i} g_{0\beta} + \partial_{0} g_{i\beta} - \partial_{\beta} g_{0i}) A_{\alpha}$$
$$\alpha = \beta = 0 \quad \text{static \& diagonal} \to 0$$

$$= \frac{1}{2} \nabla g^{00} \nabla g_{00} \phi$$

$$= \nabla^2 \left(-\frac{\sqrt{G} m}{R} \right) = \dots = -3 \frac{\sqrt{G} m}{R^3} \qquad \text{QED}$$

Neutron in Curved Spacetime

Proton in Curved Spacetime

Only the charge in the metric changes.

• $A = (\frac{c^2}{\sqrt{G}}, 0, 0, 0)$ A constant potential.

$$\bullet \quad g_{\mu\nu} = \begin{pmatrix} e^{2(\sqrt{G}q - GM)/c^2R} & 0 & 0 & 0 \\ 0 & -e^{-2(\sqrt{G}q - GM)/c^2R} & 0 & 0 \\ 0 & 0 & -e^{-2(\sqrt{G}q - GM)/c^2R} & 0 \\ 0 & 0 & 0 & -e^{-2(\sqrt{G}q - GM)/c^2R} \end{pmatrix}$$

$$g^{00} = e^{-2(\sqrt{G}q - GM)/c^2R}$$
 $g^{00}\nabla g_{00} = 2\nabla \frac{\sqrt{G}q - GM}{c^2R}$

Analyze the divergence of the Christoffel symbol.

$$-\partial^{i} \Gamma^{\alpha}{}_{0i} A_{\alpha} = -\frac{1}{2} \partial^{i} g^{\alpha\beta} (\partial_{i} g_{0\beta} + \partial_{0} g_{i\beta} - \partial_{\beta} g_{0i}) A_{\alpha}$$

$$\alpha = \beta = 0 \quad \text{static \& diagonal} \to 0$$

$$= \frac{1}{2} \nabla g^{00} \nabla g_{00} \phi$$

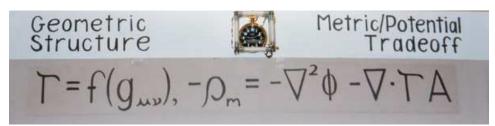
$$= \nabla^{2} (\frac{q - \sqrt{G} m}{R}) = \dots = 3 \frac{q - \sqrt{G} m}{R^{3}} \quad \text{QED}$$

Proton in Curved Spacetime

me NO Potential All Metric

$$-\nabla \cdot TA = \nabla^2 (Q - \sqrt{G}M)/R$$

Summary: Metric/Potential Diffeomorphism



Proton in Flat Spacetime All Potential NO Metric

 $-c\nabla^2 \phi = \nabla^2 (Q - \sqrt{G}M)/R$

Proton in Curved Spacetime

NO Potential All Metric

 $-\nabla \cdot TA = \nabla^2 (Q - \sqrt{G}M)/R$