
Autonomous Theory Building Systems

W.J. Paul, R.J. Solomonoff
Computer Science Department

University
D-6600 Saarbruecken

Germany

October 1990

1 Introduction

We are interested in very general systems which are programmed once and
which from then on learn autonomously all sorts of things simply by observing
a sequence of input data. In this preliminary note we give examples of
techniques which apparently permit to deal with two basic aspects related
to such systems: basic drive and complexity of learning steps.

A system which learns autonomously must have a criterion by which to
decide what is worth learning. This criterion provides the basic drive for the
system. We study very general criteria of this nature. They are related to
the concept of building theories about the input data.

A theory about any set of data D is for us simply an algorithm t which
reproduces the data. The theory t is nontrivial if the length of t is less than
the length of the data D (both measured in the same unit, say bits). We will
focus on two aspects of the complexity of nontrivial theories t: the amount
of time it takes to find t and the length of t.

In sections 2 and 4 we will formally define theory building systems as well
as some concepts of teaching and learning related to these systems. Sections
3, 5, 6 and 7 contain some techniques for constructing such systems. We feel
that with proper teaching remarkably much can be learned by such systems
with large but not astronomical computational effort.

1

We are trying to substantiate this by building such systems [BPT, B et al,
BKP]. In general we are not able to predict what exactly will belearned
in what time by these systems. If we were we would not bother to run
experiments. We are however in certain situations able to give upper bounds
on the time in which such systems will make certain progress. This allows
to estimate the run time of the experiments and hence it is of great help in
designing such systems. Several examples of this nature are presented.

We feel that large theory building systems, i.e. systems which have al-
ready learned many kinds of things, will have to develop nontrivial internal
data structures in order to continue learning at a reasonable speed. Like
the whole system these data structures have to develop autonomously out of
certain building blocks. Algorithms which compute functions with a small
range — like 0, 1 — should be very useful in this, for instance because they
can be used as conditions in tests. As these algorithms have to be build
by the system itself we need a general criterion about the usefulness of such
algorithms. In section 7 we will define a test to be useful if it helps to make
the overall theory shorter. We will illustrate this with an example.

2 Theory building systems, tests and train-

ing time

The formal definition of a theory building system has to be based on a ma-
chine model which provides complexity measures for computation time and
storage space. A measure for storage space is only needed on I/O-devices.
In order to be explicit we choose random access machines with uniform cost
measure and with several seperate input tapes and output tapes. Basic op-
erations are + and −.

A theory building system now consists of 2 machines M1 and M2. The
task of M1 is to build theories about its input data. The task of M2 is to
reconstruct the input data for M1 from the theory built by M1. Formally
M1 works in rounds r.

The start of a new round is signalled to M1 by toggling the bit under the
head on input tape 2. This is the only function of input tape 2.

Let Σ be the tape alphabet of machines M1 and M2 and let # be a
symbol not in Σ. In each round r some string w(r) ∈ Σ∗ is presented to

2

M1 on input tape 1. The sequence of all inputs W (r) = w(1)# . . . #w(r)
is called the current corpus. For each r let l(r) be the length of round r
measured in steps performed by M1. The pair e(r) = (w(r), l(r)) is called
the current exercise and the sequence ǫ(r) = (e(1), . . . , e(r)) is called the
current training sequence. The sum of the lengths of all rounds is called the
length of ǫ(r). During each round r machine M1 from time to time overwrites
its output tape with a new string t. This string t is called the current theory

or alternatively the current description of the corpus. It codes W (r) in the
following sense: machine M2 started with input t produces output W (r) and
halts.

It is well known that the capability of compressing data observed so far
can be used to predict future data, but we will not pursue this here.

Informally speaking the purpose of theory building systems is to search
for algorithms which help to compress the current description of the corpus.
By looking at the output tape of M1 we have in a sense complete information
about the algorithms discovered by M1. We might however not be able to
understand them. Thus we check on the progress of the system by other
means: we extend the current training sequence by a sequence S of exercises
and measure the number b of alphabet symbols by which the curent theory
grows while M1 processes S. The pair T = (S, b) is called a test of the theory
building system.

Next we would like to measure the amount of time necessary to train a
system to pass a test T provided the system starts in configuration C. We
call this amount of time Tr(C, T), the training time from C to T . We define
it tentatively as the length of the shortest training sequence E such that
after E the system is able to pass test T . In section 8 we will discuss this
definition further.

3 Incremental learning

Generally in order to be able to pass tests the system will have to find certain
algorithms. Systematic enumeration of all programs of some programming
language will eventually produce any program p as a candidate solution of
problems but the number of trials grows exponentially with the length of
the program p. For all but the most simple programs this is completely
impractical.

3

But suppose the system is able to construct new programs p from old
programs p′, p”, . . . which it already knows. Suppose moreover that the pro-
grams p′, p”, . . . are themselves useful for doing compression of certain inputs.
Then one could try a training sequence which starts out with inputs for which
p′, p”, . . . are useful. This approach divides the problem of discovering p into
the subproblems of discovering p′, p”, . . . and finally of discovering a proper
way to combine these programs in order to obtain p. In case programs
p′, p”, . . . are too long to be found by enumeration, then the same approach
can be used to find these programs.

We believe that very much can be learned this way. Certain basic con-
cepts are so simple such that they can be found by enumeration. During
incremental learning concepts which have been found to be useful in the past
are combined to new useful concepts in extremely simple ways. We study an
example for this related to the evaluation of arithmetic expressions in polish
notation.

On the input tape of M1 we use the following alphabet: A = {0, 1, +,−, ∗, , , =
}. Inputs w(r) are of the form E(r) = V (r) where E(r) is an expression in
polish notation and V (r) is the value of the expression. Numbers are coded
in binary. A simple example would be 101, 10, +, =, 111.

Theories of M1 will have the form t = (d, c). Here d = (d0, . . . , dk−1) is
a sequence of programs in a programming language L which will be defined
shortly. After the r’th round c is a sequence c = (c1, . . . , cr). For each
i ≤ r component ci is a triple ci = (E(i), j(i), F (i)) where j(i) ∈ {0, 1} and
V (i) = F (i) if j(i) = 0, V (i) = the output of dF (i) started with input E(i) if
j(i) = 1. Machine M(2) is not much more than an interpreter of programs
in L.

Programs in L are interpreted as commands for a pushdown machine
P . Machine P is capable of storing in a single cell of its pushdown store
elements from A′ = {0, 1}∗ ∪ {+,−, ∗}. Inputs for P are strings in A∗.
They are interpreted as sequences h(1), ..., h(s) of elements h(i) ∈ A′ ∪ {=}
separated by commas. Programs for P are generated by the following context
free grammar:

〈program〉 ::= 〈statement〉 —
〈statement〉;〈program〉

〈statement〉 ::= if 〈condition〉 then action —

4

while 〈condition〉 do 〈program〉 od —
call(〈number〉)

〈action〉 ::= add — sub — mul — push

〈condition〉 ::= num — + — − — ∗ — = — not 〈condition〉

〈number〉 ::= 0 — 1 — 0〈number〉 — 1〈number〉

Let P ′ = the number of productions which have 〈program〉 as left hand
side and let P = 1/P ′. Define S,A,C similarly for 〈statement〉, 〈action〉 and
〈condition〉. Thus we have P = 1/2, S = 1/3, A = 1/4 and C = 1/6.

We explain the semantics of programs in L. At any time the head on the
input tape touches some h(i). Actions add, sub and mul operate on the two
top elements of the stack in the obvious way and the head on the input tape
is advanced such that it touches h(i + 1). Action push pushes h(i) on the
stack and advances the head on the input tape such that it touches h(i + 1).
Condition num is true if h(i) ∈ {0, 1}∗, condition s is true if h(i) is s for
s ∈ {+,−, ∗, =}. In a statement of the form call(j) the number j refers to
program dj in d. The result of a computation is the top element of the stack
at the end of the computation.

Machine M1 will generate canditate programs starting from 〈program〉
by applying randomly and independently productions in the grammar. For
nonterminals other than 〈number〉 the possible right hand sides are chosen
with equal probability. If the sequence d currently contains k numbers then
nonterminal 〈number〉 is replaced by the binary representation of a number
between 0 and k − 1. All numbers are picked with equal likelihood 1/k.

Much more sophisticated ways of generating programs are possible. We
will consider some of them later.

We would like M1 to discover a program p like

while not = do if num then push;
if + then add; if − then sub; if ∗ then mul

od

We compute the probability of discovering this program. We have to
multiply the following probabilities:

5

Expanding 〈program〉 to 〈statement〉 : P
Expanding this to while 〈condition〉 do 〈program〉 od : S
¿From 〈condition〉 to not = : C2

¿From 〈program〉 to 〈statement〉;〈statement〉;〈statement〉 : P 3

¿From the first 〈statement〉 to while num then push: S × C × A
The same for the next two occurences of 〈statement〉.
Thus in each try one finds p only with probability P 4 × S × C2 × (S ×

C × A)3 = 1/(24 × 34 × 43 × 65) which is roughly 1/(645 × 106).
The following arguments suggest that by incremental learning one can

speed this up very much. In what follows we will often speak of the length of
objects which are not strings. What is meant is the length of some standard
encoding of the object. In the case of natural numbers we mean the length
of the binary representation without leading zeros.

In each round r machine M1 will work in the following way.
Let t = (d, c) be the current theory and w(r) = (E = V). First M1

extends c by the triple (E, 0, V). Next for all programs dj in d program dj is
applied to E. If it produces V and if the length of j is less than the length
of V then (E, 0, V) is replaced by (E, 1, j).

Suppose d contains k programs all of which fail. Let l = the length of V .
(∗): M1 tries to generate programs d′ such that length(d′)+length(k)+1 <

l and which compute V from E. Programs which contain a while loop which
is executed more than length(E) times are aborted (much more general ways
exist for dealing with programs that don’t halt [L, S85], but they are not
needed here). If such a program is found then d is extended by d′ (this
increases the length of d by length(d′) + 1 for the comma before d′) and the
last component of c is replaced by (E, 1, k). The bound l is replaced by the
length of the new program dk and k is replaced by k +1. The search for even
shorter programs continues at (∗).

Much more sophisticated methods to produce theories are possible. We
will consider some of them later.

We now present the inputs w(r) of a training sequence and a sequence
of programs dj which ends with a program equivalent to the program p
presented above. For each j we compute the probability p(j) of finding dj

in a single trial provided d = (d0, . . . , dj−1). All programs in the language
L run fast or are aborted. Therefore for each j the probability p(j) is a
reasonable measure of the amount of computation needed to expand the
sequence (d0, . . . , dj−1) by dj, and we will not bother to determine the length

6

l(r) of the rounds of the training sequence exactly. We will be interested in
sequences where the minimum of the p(j) is as large as possible, i.e. where
the hardest learning step is as easy as possible.

Let d0 be the program: if num then push. Let n be a number such that
length(n) > length(d0) + length(0) + 1. Let w(1) be the input n, =, n. Then
in each try program d0 is generated with probability p(0) = P ×S×C×A =
(1/2)× (1/3)× (1/6)× (1/4) = 1/144. If d0 is generated and d is still empty
then d0 is included into d. This follows by the construction of M1.

Next let d1 = call(0) ; call(0) ; if + then add. Let a, b and c be numbers
such that a+ b = c and such that length(c) > length(d1)+ length(1)+1. Let
w(1) be a, b, +, =, c. In each try expansion of 〈program〉 to call 〈number〉 ;
call 〈number〉 ; if + then add happens with probability P 3 × S3 × C × A =
(1/8) × (1/3)3 × (1/6) × (1/4). Expansion of 〈number〉 to 0 happens with
probability 1 because there is no choice. Thus p(1) = 1/5184.

Let d2 = call(0) ; call(0) ; if − then sub. Choose a, b, c such that a−b = c
and such that length(c) > length(d2)+length(2)+1. Let w(2) = a, b,−, =, c.
In each try program d2 is found with probability p(2) = (1/2)2 × p(1). The
reason is that in the expansion of 〈number〉 there are now the two choices 0
and 1. 2 Let d3 = call(0) ; call (0) ; if ∗ then mul. We find p(3) = (1/3)2×p(1)
in an analogous way.

Finally let d4 = while not = do call(1) ; call(2) ; call(3) od. Choose
a, . . . , h such that ((a + b− c) ∗ d + e− f) ∗ g = h and such that length(h) >
length(d4) + length(4) + 1. Choose w(4) = a, b, +, c,−, d, ∗, e, +, f,−, g, ∗, =
, h. In each try expansion from 〈program〉 to while not = do 〈statement〉 ;
〈statement〉 ; 〈statement〉 od happens with probability P × S × C2 × P 3 =
(1/2) × (1/3) × (1/6)2 × (1/8) = 1/1728. Each statement is expanded to
call 〈number〉 and then to the right call(j) with probability S × (1/k) =
(1/3) × (1/4). Thus p(4) = (1/1728) × (1/12)3 = 1/2985984.

Although this is still bad it is much better than the probability of finding
p in our original example above.

4 Training plans

The calculation in section 3 is a heuristic argument in support of the useful-
ness of incremental learning. It does not imply any reasonable upper bound
about the training time from the initial configuration to a test T where knowl-

7

edge of program d4 is useful (such a test might consist of an input (E, =, V)
similar to w(4) above and a bound b very slightly larger than the length of
E). For example we did not take into account the possibility, that completely
different programs are enumerated and included into d.

On the other hand we also have ignored certain things which contribute to
faster learning. For instance any permutation of the three call statements in
d4 would give a program which does the desired job. Hence if d = (d0, . . . , d3)
then the probability to find in one try some program equivalent to d4 is at
least 6 × p(4).

We will discuss the topic of actually proving upper bounds on training
time further in section 8.

Actually in section 3 we have only analyzed one particular possible de-
velopment of configurations which according to our plans the training could
produce. We could have checked on the progress of that plan with tests ev-
ery now and then. If even one of the probabilities, which we computed is
very small, then there is reason to worry that the training might take very
long. In this sense the minimum of the probabilities p(i) is a measure for the
difficulty of the plan.

Of course there might be short cuts we did not think about. On the
other hand the training might result in the discovery of programs which are
completely different from the ones which we expected. In case one uses as in
section 5 below mutations of known programs as a strategy to generate new
programs, then this might lead to a situation where we plan for the system
to modify a program which it never discovered in the first place.

Thus exact prediction of what will happen seems to be extremely difficult.
On the other hand the difficulties above are quite similar to those occuring in
the training say of children. Moreover with the probabilities p(i) or related
quantities we even have a heuristic quantitative measure for the difficulty of
our plan and we can use these probabilities for estimating the time one has
to give the system before it can pass the next test.

Formally we define a training plan as a sequence of triples (Ei, Ci, Ti)
where for all i component Ei is a training sequence, Ci is a configuration of
the theory building system and Ti is a test which can be passed if the system
starts in configuration Ci. The probabilities p(i) depend on the training plan
we have in mind and not only on the training sequence. They are related to
the concept of conceptual jump size in [S89].

In the next sections we will analyze a few more training plans. We will

8

present two techniques which help to improve the situation in section 3 dra-
matically.

5 Mutating programs

Probability p(4) was so bad, because three statements had to expanded si-
multaneously in the right way. Things might be better if after d3 we could
proceed to teach the following programs

d4 : while not = do call(1) od
d5 : while not = do call(1) ; call (2) od
d6 : while not = do call(1) ; call (3) ; call (4) od
In order to make this possible we provide machine M1 from section 4

with a second strategy to generate programs: mutation. The old strategy is
now called pure generation. At the beginning of any try to generate a new
programs one of the two strategies is chosen, each with equal probability
M = 1/2.

The strategy ‘mutation’ first randomly chooses a program d′ in d. This
is the program which will be mutated. All programs are chosen with equal
probability. Next in the derivation tree of d′ an occurrence ω of the nontermi-
nal 〈statement〉 is chosen. Each occurence is chosen with equal probability.
The whole subtree with root ω is replaced by the nonterminal 〈program〉.
From then on strategy ‘pure generation’ is applied to complete the program.

Let us return to the examples above. Probabilities p(1) through p(3) must
now be multiplied with M because of the choice between the two strategies.
Teach d4 without using mutation. Choose an input, where sufficiently many
large numbers are summed. Then

p(4) = M ×P ×S×C2×P ×S× (1/k) = (1/2)× (1/2)× (1/3)× (1/6)2×
(1/2) × (1/3) × (1/4) = 1/10368.

Now in order to teach d5 pick an input where several numbers are added
and subtracted. Program d5 can be obtained from d4 by mutation. In the
derivation tree of d4 there are s = 2 occurences of the nonterminal statement.
Pick the one within the while statement. Then expand 〈program〉 to call(0)
; call(1). One gets

p(5) = M × (1/s)×P 2 × (S× (1/k))2 = (1/2)× (1/2)× (1/2)2 × (1/3)2 ×
(1/4)2 = 1/2304.

Finally in order to obtain d6 from d5 one has to replace the occurence

9

of 〈statement〉 which produces call(2) by 〈program〉 and to expand this to
call(2) ; call(3). One can choose between 3 occurences of 〈statement〉 and
there are now 5 choices for the parameters j of call(j). Thus

p(6) = p(5) × (2/3) × (4/5)2 = 1/5400.

6 Compression of old inputs and renaming of

programs

Let d′ be some program that is tried in round r. So far in order to get
included into the sequence d program d′ had to be able to help compress the
description of the actual input w(r). Now we extend machine M1 further.
Every program d′ that is generated is also tried on previous inputs. Suppose
d contains k programs, suppose program d′ is generated, and let I be a set
of indices i such that (1) and (2) hold:

(1) application of d′ to w(i) gives V (i) for all i ∈ I.
(2) length(d′) + |I| × length(k) + 1 <

∑
length((i)), where the summation is

over all i ∈ I.
Then it makes sense for M1 to extend d by d′ and replace (j(i), F (i)) by

(1, k) for all i ∈ I.
Next, let us consider an example, where j(i) = 1 for all i < r, i.e. in all

rounds so far F (i) is some number < k of some program. Suppose moreover
that d′ is not shorter than the progams found so far. Then condition (2)
is false and d′ would not be added to d, even if condition (1) would be
true for I = {1, . . . , r}. Intuitively it seems wrong that a theory building
system should fail in such a situation to include d′ into d. This motivates the
following extension of M1.

Theories have now the form (d, π, c) where components d and c have
the same format as before. Suppose d has k elements. Component π is a
permutation of {1, . . . , k}. The particular code used for π is not important to
illustrate our examples. The meaning of the components F (i) in c changes:
we write F (i) = b if program dπ(b) applied to E(i) gives V (i). This permits
to give short numbers to programs which are useful more often than others.
It should be clear how to modify M1 in order to support this.

Even without using mutations we can now treat the example of sections
4 and 5 in the following way. Teach d0 through d3 as before. Next present

10

a long sequence of inputs which alternate between the forms a, b, +, =, c and
a, b,−, =, c and a, b, ∗, =, c. Let d4 be the following program: call(1); call(2)
; call(3). For this program we have p(4) = P 3 × S3 × (1/k)3 = (1/2)3 ×
(1/3)3 × (1/4)3 = 1/13824.

Choose π such that π(0) = 4. Suppose F (i) = 2 for at least l =
length(d4)+length(π)+2 indices i. Then including π and d4 will not increase
the length of the current theory by more than l − 1, even if the length of
(the code of) the old π was 0. But now all F (i) can be made 0. Because in
binary representation we have length(2) = 2 > 1 = length(0) the length of
at least l components in c decreases by 1.

If one uses mutations then one can teach this in two steps, each with an
even higher probability.

Now let d5 be the program while not = do call(4) od. Choose an input
as for d4 in section 4. We have p(5) = P × S × C2 × P × S × (1/k) =
(1/2) × (1/3) × (1/6)2 × (1/2) × (1/3) × (1/5) = 1/6480.

7 Towards structuring the sequence of pro-

grams learned

As the sequence d becomes longer and longer there are more and more choices
for the parameters of call statements. If d contains k programs and one
wants to generate a new program whch contains m new call statements, then
the probability of getting them right is proportional to k−m. This quickly
becomes a problem.

For reasons like this it is desirable to structure the internal collection of
programs of a theory building system into something like directories. There
should be simple tests to be performed on the input data which determine the
directory to work in. Each directory should only contain a limited number
of programs.

There should be ways for M1 to generate directories and candidates for
tests. We will not address here the question how to do this. We will only
focus on the question how to decide what is a good combination of directories
and tests. In the previous sections we have used a general philosophy to judge
the quality of a program: good programs are those which help to compress
one or several input words w(i). If we have directories D1, . . . , Dm then tests

11

should map the current input word w(r) to the number n ∈ {1, . . . ,m} of
an appropriate directory. Thus tests are of no direct use to compress input
words and the above criterion cannot be applied directly.

We will now extend the previous example of a theory building system such
that it comes into a situation where it is intuitively plausible to introduce
two directories and a test to decide which one to use. We will show how the
introduction of such a structure helps to shorten the current theory. This
immediately implies a measure of quality of the structure.

We extend the set of tasks which the theory building system is supposed
to learn: instead of 3 different operator symbols +,−, ∗ we want the system
now to be able to learn to deal with a large even number n of operator
symbols s1, . . . , sn. In language L there are now n operations op1, . . . , opn

which replace add, sub and mul.
Program d0 is as before. One now teaches for all i the following programs

di: call(0) ; call(0) ; if si then opi.
Let S1 = {s1, . . . , sn

2
} and let S2 = {sn

2
+1, . . . , sn}. We from now on

present only inputs with several operators where for each r the operator
symbols in w(r) are either all in S1 or all in S2. The system is supposed to
find for all i < n/2 successively the following programs

ei : call(1) ; . . . ; call(i) and
fj : call(n/2 + 1); . . . ; call(n/2 + i)

Finally it is supposed to arrive at programs
while not = do call(1) ; . . . ; call (n/2) od and

while not = do call(n/2 + 1) ; . . . ; call(n) od.
For the purposes of our example we view a directory simply as a way to

specify a small subset D of a large set d such that the following holds: if
we know that we are in D then we can specify elements in D with few bits.
Suppose d has k elements and D has K < k elements. Then we can view D
as a function D : {0, . . . , K − 1} → {0, . . . , k − 1}.

We extend the theories t of our theory building system further to include
directories. In our example there will be the following two directories.

D1, D2 : {0, . . . , n/2 − 1} → {0, . . . , k − 1}
with D1(i) = i + 1 and D2(i) = n/2 + 1 for all i.
There is a test which depends only of the first operation symbol s occuring

in the current input word. It activates D1 if s ∈ S ; otherwise it activates D2.
The semantics of a statement call(j) is now made dependent on the current
directory D, namely call(j) refers to dD(j).

12

Clearly even in the most brute force way the directories can be specified
with O(n log n) bits. But they allow to shorten each parameter in a call
statement of the programs fi by one bit. Because there are 1+2+. . .+n/2 =
Θ(n2) such statements inclusion of the directories and the corresponding test
into the current theory will at some point actually allow to shorten the length
of the current theory.

8 Final remarks

We have presented some techniques which are useful for constructing theory
building systems and a way to estimate the rate of progress these systems
make in a training plan. The techniques for constructing M1 are very general
and can be applied for all kinds of problems (see e.g. [BKP]). The language
L was chosen to match very closely the problem of evaluating expressions. In
general it is clearly desirable to use a universal language. The techniques pre-
sented here work for any language, but in a richer language the probabilities
p(i) become quickly very small.

Therefore it will be of crucial importance to develop a self organizing
directory structure which depending on the current input narrows down the
possibilities for generating programs. In section 7 we have seen that there
are very general ways to judge the quality of such a structure.

Another important goal is to set up a mechanism which allows a system
to discover and apply laws like for example commutativity.

We hope that a small number of such mechanisms and large but not as-
tronomical computational resources will permit to construct theory building
systems which exhibit surprising beheaviour.

So far we have not excluded the possibility of programming a theory
building system explicitely. For exaple we could set up the system such
that in every 100’th round it adds the current input to it’s collection of
programs. Then of course the training time Tr(C, T) from any configuration
C to a test T which can be passed if the system knows program d′ would be
O(length(d′)).

There is little hope that a more restrictive definition of theory building
systems will get rid of this difficulty: if a theory building system is not
in principle able to learn any recursive function, then it is very restrictive.
Otherwise an interpreter for a universal language can be learned with training

13

time O(1). From then on explicit programming is possible. To define formally
(and then to forbid) explicit programming seems to be the only way to make
the function Tr nontrivial, but we do not know how to do this.

On the other hand this state of affairs is not terribly disturbing. The
explicit teaching of algorithms (with no proof of correctness) is used to a
considerable extend in the education of people, e.g. when one learns in ele-
mentary school how to multiply long numbers. Thus it is not even clear that
we want to forbid this. If we are willing to allow it, then the argument cap-
tures the simple and true fact that learning an explicitely presented program
is a trivial matter for a machine.

In our view however the most interesting situation in machine learning
arises when we do not know ahead of time what program will solve a given
problem and where the machine discovers the program itself. It seems to
be very hard to find out much about this by doing theory alone. Running
experiments seems to be crucial.

References

[BPT] Bergmann P., Paul W.J., Thiele L.,“An Information Theoretic Ap-
proach to Computer Vision”, Dynamical Networks, Berlin, 1989, pp.
52–58.

[B et al] Bergmann P., Keller J., Malter T., M”uller S.M., Paul W.J., Pöschel
T., Schlüter O., Thiele L.,“Implementierung eines informationstheo-
retischen Ansatzes zur Bilderkennung”, Proc. Innovative Informations–
Infrastrukturen, III–Forum, Saarbrücken, 1988, pp. 187–197.

[BKP] Bergmann P., Keller J., Paul W.J.,“A Selforganizing System for
Image Recognition”, Proc. Neural Networks and Machine Learning,
IASTED–Conference, New York 1990.

[L] Levin L.A.,“Universal Search Problems”, Problemy Peredaci Informacii
9, pp. 115–116, Translated in: Problems of Information Transmission 9,
pp. 265–266.

[S78] Solomonoff R.J.,“Complexity–Based Induction Systems: Comparisons
and Convergence Theorems”, IEEE Transactions on Information The-
ory, Vol. IT–24, No. 4, 7/1978.

14

[S85] Solomonoff R.J.,“Optimum Sequential Search”, Oxbridge Research Re-
port, Oxbridge Research, Box 559, Cambridge, Mass. 02238, Rev., 1985.

[S89] Solomonoff R.J.,“A System for Incremental Learning Based on Algo-
rithmic Probability”, Proc. of the 6th Israeli Conference on Artificial
Intelligence, (Computer)Vision and Pattern Recognition, DEC 26–27
1989, pp. 515–527.

Problems and Issues are stated in section 8 of the paper.

Workgroup suggestions and comments

The first authors presentation of the above ideas in the workshop was quite
informal (to put it mildly). Partly because of this but also partly because
of an apparent urge to speak about the matter the work group discussed the
sociological and philosophical consequences which would arise if one would
succeed in the construction of smart machines.

The ideas discussed were reasonably disturbing but this is perhaps due
to the fact that the ideas were based on speculation rather than on technical
under standing. Only one centuriy ago one would have found the idea
of machines made out of silicon and capable of multiplying numbers very
disturbing. After all the capability to multiply distinguishes man from animal
and one would have suspected that a soul is needed in order to do it.

15

